a) (b) (c)Figure 1: Inspired by the pâte-de-verre techniques of glass sculpting, the whale's-tail vase is modeled by scaling the tail and placing it onto a glass "bead." The geometry of the tail and bead is textured around the base, and the whale's tail is used for the cap of the vessel. The full vase is shown in (a), a zoomed image in (b), and the wireframe detail of the model in (c). AbstractA shell map is a bijective mapping between shell space and texture space that can be used to generate small-scale features on surfaces using a variety of modeling techniques. The method is based upon the generation of an offset surface and the construction of a tetrahedral mesh that fills the space between the base surface and its offset. By identifying a corresponding tetrahedral mesh in texture space, the shell map can be implemented through a straightforward barycentriccoordinate map between corresponding tetrahedra. The generality of shell maps allows texture space to contain geometric objects, procedural volume textures, scalar fields, or other shell-mapped objects.
The physical interpretation of mathematical features of tensor fields is highly application-specific. Existing visualization methods for tensor fields only cover a fraction of the broad application areas. We present a visualization method tailored specifically to the class of tensor field exhibiting properties similar to stress and strain tensors, which are commonly encountered in geomechanics. Our technique is a global method that represents the physical meaning of these tensor fields with their central features: regions of compression or expansion. The method is based on two steps: first, we define a positive definite metric, with the same topological structure as the tensor field; second, we visualize the resulting metric. The eigenvector fields are represented using a texture-based approach resembling line integral convolution (LIC) methods. The eigenvalues of the metric are encoded in free parameters of the texture definition. Our method supports an intuitive distinction between positive and negative eigenvalues. We have applied our method to synthetic and some standard data sets, and "real" data from Earth science and mechanical engineering application.
We present a practical approach to generate stochastic anisotropic samples with Poisson-disk characteristic over a two-dimensional domain. In contrast to isotropic samples, we understand anisotropic samples as non-overlapping ellipses whose size and density match a given anisotropic metric. Anisotropic noise samples are useful for many visualization and graphics applications. The spot samples can be used as input for texture generation, e.g., line integral convolution (LIC), but can also be used directly for visualization. The definition of the spot samples using a metric tensor makes them especially suitable for the visualization of tensor fields that can be translated into a metric. Our work combines ideas from sampling theory and mesh generation. To generate these samples with the desired properties we construct a first set of non-overlapping ellipses whose distribution closely matches the underlying metric. This set of samples is used as input for a generalized anisotropic Lloyd relaxation to distribute noise samples more evenly. Instead of computing the Voronoi tessellation explicitly, we introduce a discrete approach which combines the Voronoi cell and centroid computation in one step. Our method supports automatic packing of the elliptical samples, resulting in textures similar to those generated by anisotropic reaction-diffusion methods. We use Fourier analysis tools for quality measurement of uniformly distributed samples. The resulting samples have nice sampling properties, for example, they satisfy a blue noise property where low frequencies in the power spectrum are reduced to a minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.