The presence of natural ambient noise interferes with the system for locating and identifying underwater targets. This paper suggests that a Dual-Path Transformation Network(DPTN) reduces ambient noise in underwater acoustic signals. First, the input acoustic signals' higher-order non-linear features are extracted using a multi-scale convolutional encoder neural network. Second, sub-vectors with the same length are created according to the time dimension from the higher-order non-linear features. The subvectors are stitched together to form a three-dimensional tensor. Third, a neural network transformer based on the feed-forward network is constructed. Further, to capture long-term series features and separate the target signal from the noisy signals, the three-dimensional tensor is used as the input of the transformerbased masking network. Finally, overlap-add and transpose are used to obtain discernible target signals. The experimental results verify the effectiveness of the proposed underwater acoustic signal denoising algorithm and demonstrate that the proposed DPRN method can obtain higher output signal-to-noise ratio (SNR) and the scale-invariant signal-to-noise ratio (SI-SNR) compared with the other classical algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.