Lung cancer is the leading cause of cancer-related deaths worldwide. To identify genetic factors that modify the risk of lung cancer in individuals of Chinese ancestry, we performed a genome-wide association scan in 5,408 subjects (2,331 individuals with lung cancer (cases) and 3,077 controls) followed by a two-stage validation among 12,722 subjects (6,313 cases and 6,409 controls). The combined analyses identified six well-replicated SNPs with independent effects and significant lung cancer associations (P < 5.0 × 10(-8)) located in TP63 (rs4488809 at 3q28, P = 7.2 × 10(-26)), TERT-CLPTM1L (rs465498 and rs2736100 at 5p15.33, P = 1.2 × 10(-20) and P = 1.0 × 10(-27), respectively), MIPEP-TNFRSF19 (rs753955 at 13q12.12, P = 1.5 × 10(-12)) and MTMR3-HORMAD2-LIF (rs17728461 and rs36600 at 22q12.2, P = 1.1 × 10(-11) and P = 6.2 × 10(-13), respectively). Two of these loci (13q12.12 and 22q12.2) were newly identified in the Chinese population. These results suggest that genetic variants in 3q28, 5p15.33, 13q12.12 and 22q12.2 may contribute to the susceptibility of lung cancer in Han Chinese.
SummaryThe Arabidopsis gene SERRATE (SE) controls leaf development, meristem activity, inflorescence architecture and developmental phase transition. It has been suggested that SE, which encodes a C 2 H 2 zinc finger protein, may change gene expression via chromatin modification. Recently, SE has also been shown to regulate specific microRNAs (miRNAs), miR165/166, and thus control shoot meristem function and leaf polarity. However, it remains unclear whether and how SE modulates specific miRNA processing. Here we show that the se mutant exhibits some similar developmental abnormalities as the hyponastic leaves1 (hyl1) mutant. Since HYL1 is a nuclear double-stranded RNA-binding protein acting in the DICER-LIKE1 (DCL1) complex to regulate the first step of primary miRNA transcript (pri-miRNA) processing, we hypothesized that SE could play a previously unrecognized and general role in miRNA processing. Genetic analysis supports that SE and HYL1 act in the same pathway to regulate plant development. Consistently, SE is critical for the accumulation of multiple miRNAs and the trans-acting small interfering RNA (ta-siRNA), but is not required for sense posttranscriptional gene silencing. We further demonstrate that SE is localized in the nucleus and interacts physically with HYL1. Finally, we provide evidence that SE and HYL1 probably act with DCL1 in processing primiRNAs before HEN1 in miRNA biogenesis. In plants and animals, miRNAs are known to be processed in a stepwise manner from pri-miRNA. Our data strongly suggest that SE plays an important and general role in primiRNA processing, and it would be interesting to determine whether animal SE homologues may play similar roles in vivo.
Gastric cancer, including the cardia and non-cardia types, is the second leading cause of cancer-related deaths worldwide. To identify genetic risk variants for non-cardia gastric cancer, we performed a genome-wide association study in 3,279 individuals (1,006 with non-cardia gastric cancer and 2,273 controls) of Chinese descent. We replicated significant associations in an additional 6,897 subjects (3,288 with non-cardia gastric cancer and 3,609 controls). We identified two new susceptibility loci for non-cardia gastric cancer at 5p13.1 (rs13361707 in the region including PTGER4 and PRKAA1; odds ratio (OR) = 1.41; P = 7.6 × 10(-29)) and 3q13.31 (rs9841504 in ZBTB20; OR = 0.76; P = 1.7 × 10(-9)). Imputation analyses also confirmed previously reported associations of rs2294008 and rs2976392 on 8q24, rs4072037 on 1q22 and rs13042395 on 20p13 with non-cardia gastric cancer susceptibility in the Han Chinese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.