To study the shear damage and failure characteristics of red sandstone under different normal stress conditions, the failure process of sandstone under three different shear angles (50°, 55°, 60°) were studied by using variable angle shear test device. The shear stress-deformation curves and failure characteristics of sandstone were obtained, and the relationships between shear cracks and acoustic emission impact times, amplitude, peak frequency were established. With the increase of shear angle, the normal stress, shear stress and peak shear stress decrease gradually. The development of micro-cracks in the shear plane appear more earlier. The high frequency signal decreases signi cantly, which may have a signi cant corresponding relationship with the rock friction and shear effect. The failure mode of rock changes from plasticity to brittleness. The amplitude changes are concave, and more acoustic emission energy is released at compaction stage and plastic(failure) stage. The rock spalling mainly occur in the penetrating area of main and secondary cracks surrounding the two ends of specimen. The spalling degree was obviously weakened with the increase of shear angle. The results have important guiding value for judging and predicting the instability mechanism of rock engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.