The electric shaver market in China reach 26.3 billion RMB by 2021. Nowadays, in addition to functional satisfaction, consumers are increasingly focused on the emotional imagery conveyed by products with multiple-senses, and electric shavers are not only shaped to attract consumers, but their product sound also conveys a unique emotional imagery. Based on Kansei engineering and artificial neural networks, this research explored the emotional imagery conveyed by the sound of electric shavers. First, we collected a wide sample of electric shavers in the market (230 types) and obtained the consumers’ perceptual vocabulary (85,710 items) through a web crawler. The multidimensional scaling method and cluster analysis were used to condense the sample into 34 representative samples and 3 groups of representative Kansei words; then, the semantic differential method was used to assess the users’ emotional evaluation values. The sound design elements (including item and category) of the samples were collected and classified using Heardrec Devices and ArtemiS 13.6 software, and, finally, multiple linear and non-linear correlation prediction models (four types) between the sound design elements of the electric shaver and the users’ emotional evaluation values were established by the quantification theory type I, general regression neural network, back propagation neural network, and genetic algorithm-based BPNN. The models were validated by paired-sample t-test, and all of them had good reliability, among which the genetic algorithm-based BPNN had the best accuracy. In this research, four linear and non-linear Kansei prediction models were constructed. The aim was to apply higher accuracy prediction models to the prediction of electric shaver sound imagery, while giving specific and accurate sound design metrics and references.
The market scale of electric shavers in China has reached ¥ 26.3 billion in 2021. Consumers currently place an increasing emphasis on the Kansei image conveyed by products rather than just concerning with functional satisfaction. To meet consumers’ expectations, the emotional message conveyed by product design is essential under multisensory channels. This research first collected 230 electric shavers samples and 135 pairs of consumers’ Kansei words, then reduced them into 34 representative samples using multidimensional scale and clustering analysis, with 4 groups of representative Kansei words selected via the expert group. Moreover, consumers’ Kansei images were evaluated via questionnaire using the semantic differential scales, with 416 valid samples acquired in total. Meanwhile, design elements of the samples (including item and category) were classified by ways of morphological analysis and audio software. At last, the prediction models of the electric shavers were established between the overall design elements and user’s Kansei evaluation under the multisensory channel of visual model and auditory audio taking advantage of Quantification Theory Type I , back propagation neural network, and genetic algorithm-based BPNN. The proposed models can provide defined design indexes and references in multisensory design, facilitating designers to design in a logical and scientific manner rather than designing as per experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.