We study the weapon-target assignment WTA problem which has wide applications in the area of defense-related operations research. This problem calls for finding a proper assignment of weapons to targets such that the total expected damaged value of the targets to be maximized. The WTA problem can be formulated as a nonlinear integer programming problem which is known to be NP-complete. There does not exist any exact method for the WTA problem even small size problems, although several heuristic methods have been proposed. In this paper, Lagrange relaxation method is proposed for the WTA problem. The method is an iterative approach which is to decompose the Lagrange relaxation into two subproblems, and each subproblem can be easy to solve to optimality based on its specific features. Then, we use the optimal solutions of the two subproblems to update Lagrange multipliers and solve the Lagrange relaxation problem iteratively. Our computational efforts signify that the proposed method is very effective and can find high quality solutions for the WTA problem in reasonable amount of time.
The augmented Lagrangian method (ALM) is fundamental in solving convex programming problems with linear constraints. The proximal version of ALM, which regularizes ALM’s subproblem over the primal variable at each iteration by an additional positive-definite quadratic proximal term, has been well studied in the literature. In this paper we show that it is not necessary to employ a positive-definite quadratic proximal term for the proximal ALM and the convergence can be still ensured if the positive definiteness is relaxed to indefiniteness by reducing the proximal parameter. An indefinite proximal version of the ALM is thus proposed for the generic setting of convex programming problems with linear constraints. We show that our relaxation is optimal in the sense that the proximal parameter cannot be further reduced. The consideration of indefinite proximal regularization is particularly meaningful for generating larger step sizes in solving ALM’s primal subproblems. When the model under discussion is separable in the sense that its objective function consists of finitely many additive function components without coupled variables, it is desired to decompose each ALM’s subproblem over the primal variable in Jacobian manner, replacing the original one by a sequence of easier and smaller decomposed subproblems, so that parallel computation can be applied. This full Jacobian splitting version of the ALM is known to be not necessarily convergent, and it has been studied in the literature that its convergence can be ensured if all the decomposed subproblems are further regularized by sufficiently large proximal terms. But how small the proximal parameter could be is still open. The other purpose of this paper is to show the smallest proximal parameter for the full Jacobian splitting version of ALM for solving multi-block separable convex minimization models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.