BACKGROUND By analyzing the risk factors of postoperative complications in elderly patients with hip replacement, We aimed to develop a nomogram model based on preoperative and intraoperative variables and verified the sensitivity and specificity for risk stratification of postoperative complications in elderly with total hip replacement patients. AIM To develop a nomogram model for risk stratification of postoperative complications in elderly with total hip replacement patients. METHODS A total of 414 elderly patients who underwent surgical treatment for total hip replacement hospitalized at the Affiliated Hospital of Guangdong Medical University from March 1, 2017 to August 31, 2019 were included into this study. Univariate and multivariate logistic regression were conducted to identify independent risk factors of postoperative complication in the 414 patients. A nomogram was developed by R software and validated to predict the risk of postoperative complications. RESULTS Multivariate logistic regression analysis revealed that age (OR = 1.05, 95%CI: 1.00-1.09), renal failure (OR = 0.90, 95%CI: 0.83-0.97), Type 2 diabetes (OR = 1.05, 95%CI: 1.00-1.09), albumin (ALB) (OR = 0.91, 95%CI: 0.83-0.99) were independent risk factors of postoperative complication in elderly patients with hip replacement ( P < 0.05). For validation of the nomogram, receive operating characteristic curve revealed that the model predicting postoperative complication in elderly patients with hip replacement was the area under the curve of 0.8254 (95%CI: 0.78-0.87), the slope of the calibration plot was close to 1 and the model passed Hosmer-Lemeshow goodness of fit test ( χ 2 = 10.16, P = 0.4264), calibration in R E max = 0.176, E avg = 0.027, which all demonstrated that the model was of good accuracy. CONCLUSION The nomogram predicting postoperative complications in patients with total hip replacement constructed based on age, type 2 diabetes, renal failure and ALB is of good discrimination and accuracy, which was of clinical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.