The pursuit of sustainable energy has a great request for advanced energy storage devices. Lithium metal batteries are regarded as a potential electrochemical storage system because of the extremely high capacity and the most negative electrochemical potential of lithium metal anode. Dead lithium formed in the stripping process significantly contributes to the low efficiency and short lifespan of rechargeable lithium metal batteries. This review displays a critical review on the current research status about the stripping electrochemistry of lithium metal anode. The significance of stripping process to a robust lithium metal anode is emphasized. The stripping models in different electrochemical scenarios are discussed. Specific attention is paid to the understanding for the electrochemical principles of atom diffusion, electrochemical reaction, ion diffusion in solid electrolyte interphase (SEI), and electron transfer with the purpose to strengthen the insights into the behavior of lithium electrode stripping. The factors affecting stripping processes and corresponding solutions are summarized and categorized as follows: surface physics, SEI, operational and external factors. This review affords fresh insights to explore the lithium anode and design robust lithium metal batteries based on the comprehensive understanding of the stripping electrochemistry.
Exploring advanced strategies in alleviating the thermal runaway of lithium‐metal batteries (LMBs) is critically essential. Herein, a novel electrolyte system with thermoresponsive characteristics is designed to largely enhance the thermal safety of 1.0 Ah LMBs. Specifically, vinyl carbonate (VC) with azodiisobutyronitrile is introduced as a thermoresponsive solvent to boost the thermal stability of both the solid electrolyte interphase (SEI) and electrolyte. First, abundant poly(VC) is formed in SEI with thermoresponsive electrolyte, which is more thermally stable against lithium hexafluorophosphate compared to the inorganic components widely acquired in routine electrolyte. This increases the critical temperature for thermal safety (the beginning temperature of obvious self‐heating) from 71.5 to 137.4 °C. The remained VC solvents can be polymerized into poly(VC) as the battery temperature abnormally increases. The poly(VC) can not only afford as a barrier to prevent the direct contact between electrodes, but also immobilize the free liquid solvents, thereby reducing the exothermic reactions between electrodes and electrolytes. Consequently, the internal‐short‐circuit temperature and “ignition point” temperature (the starting temperature of thermal runaway) of LMBs are largely increased from 126.3 and 100.3 °C to 176.5 and 203.6 °C. This work provides novel insights for pursuing thermally stable LMBs with the addition of various thermoresponsive solvents in commercial electrolytes.
High‐energy‐density lithium metal batteries (LMBs) are widely accepted as promising next‐generation energy storage systems. However, the safety features of practical LMBs are rarely explored quantitatively. Herein, the thermal runaway behaviors of a 3.26 Ah (343 Wh kg−1) Li | LiNi0.5Co0.2Mn0.3O2 pouch cell in the whole life cycle are quantitatively investigated by extended volume‐accelerating rate calorimetry and differential scanning calorimetry. By thermal failure analyses on pristine cell with fresh Li metal, activated cell with once plated dendrites, and 20‐cycled cell with large quantities of dendrites and dead Li, dendrite‐accelerated thermal runaway mechanisms including reaction sequence and heat release contribution are reached. Suppressing dendrite growth and reducing the reactivity between Li metal anode and electrolyte at high temperature are effective strategies to enhance the safety performance of LMBs. These findings can largely enhance the understanding on the thermal runaway behaviors of Li metal pouch cells in practical working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.