Topological insulators (TIs) are a new type of electronic materials in which the nontrivial insulating bulk band topology governs conducting boundary states with embedded spin-momentum locking. Such edge states are more robust in a two-dimensional (2D) TI against scattering by nonmagnetic impurities than in its three-dimensional (3D) variant, because in 2D the two helical edge states are protected from the only possible backscattering. This makes the 2D TI family a better candidate for coherent spin transport and related applications. While several 3D TIs are already synthesized experimentally, physical realization of 2D TI is so far limited to hybrid quantum wells with a tiny bandgap that does not survive temperatures above 10 K. Here, combining first-principles calculations and scanning tunneling microscopy/spectroscopy (STM/STS) experimental studies, we report nontrivial 2D TI phases in 2-monolayer (2-ML) and 4-ML Bi(110) films with large and tunable bandgaps determined by atomic buckling of Bi(110) films. The gapless edge states are experimentally detected within the insulating bulk gap at 77 K. The band topology of ultrathin Bi(110) films is sensitive to atomic buckling. Such buckling is sensitive to charge doping and could be controlled by choosing different substrates on which Bi(110) films are grown.
Solid-state batteries (SSBs) are promising for safer energy storage, but their active loading and energy density have been limited by large interfacial impedance caused by the poor Li transport kinetics between the solid-state electrolyte and the electrode materials. To address the interfacial issue and achieve higher energy density, herein, a novel solid-like electrolyte (SLE) based on ionic-liquid-impregnated metal-organic framework nanocrystals (Li-IL@MOF) is reported, which demonstrates excellent electrochemical properties, including a high room-temperature ionic conductivity of 3.0 × 10 S cm , an improved Li transference number of 0.36, and good compatibilities against both Li metal and active electrodes with low interfacial resistances. The Li-IL@MOF SLE is further integrated into a rechargeable Li|LiFePO SSB with an unprecedented active loading of 25 mg cm , and the battery exhibits remarkable performance over a wide temperature range from -20 up to 150 °C. Besides the intrinsically high ionic conductivity of Li-IL@MOF, the unique interfacial contact between the SLE and the active electrodes owing to an interfacial wettability effect of the nanoconfined Li-IL guests, which creates an effective 3D Li conductive network throughout the whole battery, is considered to be the key factor for the excellent performance of the SSB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.