Nutrient element deprivation, such as iron (Fe) deficiency stress, is a major factor limiting plant survival and proliferation in marginal soils. To cope with a low Fe environment, plants have evolved elaborate mechanisms underlying Fe homeostasis via intricate transcriptional and post-transcriptional regulation. Here, we characterized the Fe deficiency-inducible MYB transcription factor MdMYB58 in apple plants. Overexpressing MdMYB58 resulted in the accumulation of Fe in the root of transgenic Arabidopsis and apple calli when they were exposed to low Fe available conditions. Further investigation revealed that MdMYB58 bound to the promoter of MdMATE43, and its homologue FRD3 in Arabidopsis. Transient expression and stable transgenic assays in apple calli indicated that MdMYB58 transcriptionally repressed MdMATE43 mRNA, as well as FRD3 in Arabidopsis. Interestingly, AtMYB58, the homologue of MdMYB58, possessed higher binding activities to MdMATE43 and FRD3, which suggests a potentially conserved feature of MYB58 binding to MATE transporters in plants. Additionally, MYB-MATE-mediated regulation of Fe homeostasis may be related to the PYE-related Fe deficiency regulatory network via MdSAT1, a member of the IVa subfamily of bHLH transcription factors. Co-overexpression of MdSAT1 competitively weakened MdMYB58-overexpression induced repression of MdMATE43 transcript abundancy by protein-protein interaction. Taken together, the newly identified MYB-bHLH transcription factor expands our understanding of multilevel molecular mechanisms that plants use to coordinate Fe demand with Fe uptake, transport, and tissue partitioning under low Fe conditions.
Summary
Fruit morphology is an important agronomical trait of many crops. Here, we identify Sly‐miR159 as an important regulator of fruit morphology in tomato, a model species of fleshy‐fruit development. We show that Sly‐miR159 functions through its target
SlGAMYB2
to control fruit growth. Suppression of Sly‐miR159 and overexpression of
SlGAMYB2
result in larger fruits with a reduced length/width ratio, while loss of function of
SlGAMYB2
leads to the formation of smaller and more elongated fruits. Gibberellin (GA) is a major phytohormone that regulates fruit development in tomato. We show the Sly‐miR159‐
SlGAMYB2
pathway controls fruit morphology by modulating GA biosynthesis. In particular, we demonstrate that Sly‐miR159 promotes GA biosynthesis largely through the direct repression of the GA biosynthetic gene
SlGA3ox2
by
SlGAMYB2
. Together, our findings reveal the action of Sly‐miR159 on GA biosynthesis as a previously unidentified mechanism that controls fruit morphology in tomato. Modulating this pathway may have potential applications in tomato breeding for manipulating fruit growth and facilitating the process of fruit improvement.
WRKY transcription factors are involved in defense responses caused by biotic stresses. Phylloxera (Daktulosphaira vitifoliae Fitch), a pest widespread in viticulture, elicits transcriptional reprogramming of plant defense-associated components, such as regulons related to WRKYs and salicylic acid (SA) signaling. In this study, we characterized WRKY46, a WRKY transcription factor responsible for phylloxera attack, and revealed the molecular mechanism for WRKY-mediated defense responses to phylloxera. qRT-PCR and GUS staining analyses revealed that WRKY46 is induced in response to phylloxera damage and mechanical wounding. VvWRKY46 is a nuclear-localized transcription factor that activates its downstream target VvCHIB by direct protein–DNA interaction. Regulons involved in the SA-mediated defense response were regulated during incompatible interactions between “1103 Paulsen” rootstock and phylloxera. In addition, WRKY46 exhibited a higher transcript abundance in “1103 Paulsen” than in “Crimson Seedless”, regardless of whether the plants were infected with phylloxera. Furthermore, the enhanced expression of VvWRKY46 significantly attenuated phylloxera attack and delayed nymph development of composite grape plants. In summary, we demonstrated that WRKY46 plays a role in the SA-mediated defense-regulatory network by directly binding to the downstream structural gene VvCHIB. The phylloxera-responsive gene WRKY46 was identified, which could improve the understanding of the basic mechanism of grapevine in response to phylloxera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.