Genetic association studies often examine features independently, potentially missing subpopulations with multiple phenotypes that share a single cause. We describe an approach that aggregates phenotypes on the basis of patterns described by Mendelian diseases. We mapped the clinical features of 1204 Mendelian diseases into phenotypes captured from the electronic health record (EHR) and summarized this evidence as phenotype risk scores (PheRSs). In an initial validation, PheRS distinguished cases and controls of five Mendelian diseases. Applying PheRS to 21,701 genotyped individuals uncovered 18 associations between rare variants and phenotypes consistent with Mendelian diseases. In 16 patients, the rare genetic variants were associated with severe outcomes such as organ transplants. PheRS can augment rare-variant interpretation and may identify subsets of patients with distinct genetic causes for common diseases.
ObjectiveTo develop a gastric cancer (GC) risk prediction rule as an initial prescreening tool to identify individuals with a high risk prior to gastroscopy.DesignThis was a nationwide multicentre cross-sectional study. Individuals aged 40–80 years who went to hospitals for a GC screening gastroscopy were recruited. Serum pepsinogen (PG) I, PG II, gastrin-17 (G-17) and anti-Helicobacter pylori IgG antibody concentrations were tested prior to endoscopy. Eligible participants (n=14 929) were randomly assigned into the derivation and validation cohorts, with a ratio of 2:1. Risk factors for GC were identified by univariate and multivariate analyses and an optimal prediction rule was then settled.ResultsThe novel GC risk prediction rule comprised seven variables (age, sex, PG I/II ratio, G-17 level, H. pylori infection, pickled food and fried food), with scores ranging from 0 to 25. The observed prevalence rates of GC in the derivation cohort at low-risk (≤11), medium-risk (12–16) or high-risk (17–25) group were 1.2%, 4.4% and 12.3%, respectively (p<0.001).When gastroscopy was used for individuals with medium risk and high risk, 70.8% of total GC cases and 70.3% of early GC cases were detected. While endoscopy requirements could be reduced by 66.7% according to the low-risk proportion. The prediction rule owns a good discrimination, with an area under curve of 0.76, or calibration (p<0.001).ConclusionsThe developed and validated prediction rule showed good performance on identifying individuals at a higher risk in a Chinese high-risk population. Future studies are needed to validate its efficacy in a larger population.
Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of ''restricted'' and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 5 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRS Tikkanen and PRS Tada ; 28 and 50 variants, respectively) and two genome-wide PRSs (PRS metaGRS and PRS LDPred ; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRS metaGRS , the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (p interaction ¼ 0.77) but were significantly attenuated in AA individuals (p interaction ¼ 2.9 3 10 À3 ). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry-and ethnicity PRSs.
Cisplatin (DDP) is currently one of the most commonly used chemotherapeutic drugs for treating ovarian and lung cancer. However, resistance to cisplatin is common and it often leads to therapy failure. In addition, the precise mechanism of cisplatin resistance is still in its infancy. In this study, we demonstrated that the oxidative pentose phosphate pathway enzyme 6-phosphogluconate dehydrogenase (6PGD) promotes cisplatin resistance. We showed that cisplatin-resistant cancer cells (C13∗ and A549DDP), had higher levels of 6PGD compared to their cisplatin-sensitive counterparts (OV2008 and A549). Furthermore, ovarian and lung cancer patients with higher 6PGD levels have worse survival outcomes relative to patients with lower 6PGD expression. Interestingly, we found that the upregulation of 6PGD in cisplatin-resistant cells was due to the decreased expression of miR-206 and miR-613, which we found to target this enzyme. We further demonstrate that suppressing 6PGD using shRNA, inhibitor or miR-206/miR-613, either as single agents or in combination, could sensitize cisplatin-resistant cancer cells to cisplatin treatment and thereby improving the therapeutic efficacy of cisplatin. Taken together, our results suggest that 6PGD serves as a novel potential target to overcome cisplatin resistance.
Inflammation response plays a critical role in all phases of atherosclerosis (AS). Increased evidence has demonstrated that miR-155 mediates inflammatory mediators in macrophages to promote plaque formation and rupture. However, the precise mechanism of miR-155 remains unclear in AS. Here, we also found that miR-155 and PDCD4 were elevated in the aortic tissue of atherosclerotic mice and ox-LDL treated RAW264.7 cells. Further studies showed that miR-155 not only directly inhibited SOCS1 expression, but also increased the expression of p-STAT and PDCD4, as well as the production of proinflammation mediators IL-6 and TNF-α. Downregulation of miR-155 and PDCD4 and upregulation of SOCS1 obviously decreased the IL-6 and TNF-α expression. In addition, inhibition of miR-155 levels in atherosclerotic mice could notably reduce the IL-6 and TNF-α level in plasma and aortic tissue, accompanied with increased p-STAT3 and PDCD4 and decreased SOCS1. Thus, miR-155 might mediate the inflammation in AS via the SOCS1-STAT3-PDCD4 axis. These results provide a rationale for intervention of intracellular miR-155 as possible antiatherosclerotic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.