Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the Na + /glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na + -linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human.
Glucose is the primary precursor for the synthesis of lactose, which controls milk volume by maintaining the osmolarity of milk. Glucose uptake in the mammary gland plays a key role in milk production. Glucose transport across the plasma membranes of mammalian cells is carried out by 2 distinct processes: facilitative transport, mediated by a family of facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Transport kinetic studies indicate that glucose transport across the plasma membrane of the lactating bovine mammary epithelial cell has a K(m) value of 8.29 mM for 3-O-methyl-D-glucose and can be inhibited by both cytochalasin-B and phloretin, indicating a facilitative transport process. This is consistent with the observation that in the lactating bovine mammary gland, GLUT1 is the predominant glucose transporter. However, the bovine lactating mammary gland also expresses GLUT3, GLUT4, GLUT5, GLUT8, GLUT12, and sodium-dependent SGLT1 and SGLT2 at different levels. Studies of protein expression and cellular and subcellular localizations of these transporters are needed to address their physiological functions in the mammary gland. From late pregnancy to early lactation, expression of GLUT1, GLUT8, GLUT12, SGLT1, and SGLT2 mRNA increases from at least 5-fold to several hundred-fold, suggesting that these transporters may be regulated by lactogenic hormones and have roles in milk synthesis. The GLUT1 protein is detected in lactating mammary epithelial cells. Its expression level decreases from early to late lactation stages and becomes barely detectable in the nonlactating gland. Both GLUT1 mRNA and protein levels in the lactating mammary gland are not significantly affected by exogenous bovine growth hormone, and, in addition, GLUT1 mRNA does not appear to be affected by leptin.
Glucose is the major precursor of lactose, which is synthesized in Golgi vesicles of mammary secretory alveolar epithelial cells during lactation. Glucose is taken up by mammary epithelial cells through a passive, facilitative process, which is driven by the downward glucose concentration gradient across the plasma membrane. This process is mediated by facilitative glucose transporters (GLUTs), of which there are 14 known isoforms. Mammary glands mainly express GLUT1 and GLUT8, and GLUT1 is the predominant isoform with a Km of ~10 mM and transport activity for mannose and galactose in addition to glucose. Mammary glucose transport activity increases dramatically from the virgin state to the lactation state, with a concomitant increase in GLUT expression. The increased GLUT expression during lactogenesis is not stimulated by the accepted lactogenic hormones. New evidence indicates that a possible low oxygen tension resulting from increased metabolic rate and oxygen consumption may play a major role in stimulating glucose uptake and GLUT1 expression in mammary epithelial cells during lactogenesis. In addition to its primary presence on the plasma membrane, GLUT1 is also expressed on the Golgi membrane of mammary epithelial cells and is likely involved in facilitating the uptake of glucose and galactose to the site of lactose synthesis. Because lactose synthesis dictates milk volume, regulation of GLUT expression and trafficking represents potentially fruitful areas for further research in dairy production. In addition, this research will have pathological implications for the treatment of breast cancer because glucose uptake and GLUT expression are up-regulated in breast cancer cells to accommodate the increased glucose need.
The mammary gland undergoes dramatic functional and metabolic changes during the transition from late pregnancy to lactation. To better understand the molecular events underlying these changes, we analyzed expression profiles of approximately 23,000 gene transcripts in bovine mammary tissue about day 5 before parturition and day 10 after parturition. At the cutoff criteria of the signed fold change >or=2 or
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.