The problem of cross-platform binary code similarity detection aims at detecting whether two binary functions coming from different platforms are similar or not. It has many security applications, including plagiarism detection, malware detection, vulnerability search, etc. Existing approaches rely on approximate graphmatching algorithms, which are inevitably slow and sometimes inaccurate, and hard to adapt to a new task. To address these issues, in this work, we propose a novel neural network-based approach to compute the embedding, i.e., a numeric vector, based on the control flow graph of each binary function, then the similarity detection can be done efficiently by measuring the distance between the embeddings for two functions. We implement a prototype called Gemini. Our extensive evaluation shows that Gemini outperforms the state-of-the-art approaches by large margins with respect to similarity detection accuracy. Further, Gemini can speed up prior art's embedding generation time by 3 to 4 orders of magnitude and reduce the required training time from more than 1 week down to 30 minutes to 10 hours. Our real world case studies demonstrate that Gemini can identify significantly more vulnerable firmware images than the state-of-the-art, i.e., Genius. Our research showcases a successful application of deep learning on computer security problems.
Research applications in chemoinformatics and toxicoinformatics increasingly use representations of molecules in the form of numerical descriptors that capture the structural characteristics and properties of molecules. These representations are useful for ADME/toxicity prediction, diversity analysis, library design, QSAR/QSPR, virtual screening, and other purposes. Molecular descriptors have ranged from relatively simple forms calculated from simple two-dimensional (2D) chemical structures to more complex forms representing three-dimensional (3D) chemical structures or complex molecular fingerprints consisting of numerous bit positions to represent specific chemical information. The Mold (2) software was developed to enable the rapid calculation of a large and diverse set of descriptors encoding two-dimensional chemical structure information. Comparative analysis of Mold (2) descriptors with those calculated by Cerius (2), Dragon, and Molconn-Z on several data sets using Shannon entropy analysis demonstrated that Mold (2) descriptors convey a similar amount of information. In addition, using the same classification method, slightly better models were generated using Mold (2) descriptors compared to those generated using descriptors from the compared commercial software packages. The low computing cost for Mold (2) makes it suitable not only for small data sets, such as in QSAR, but also for large databases in virtual screening. High reproducibility and reliability are expected because Mold (2) does not require 3D structures. Mold (2) is freely available to the public ( http://www.fda.gov/nctr/science/centers/toxicoinformatics/index.htm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.