Microbial trimethylamine (TMA)-lyase activity promotes the development of atherosclerosis by generating of TMA, the precursor of TMA N-oxide (TMAO). TMAO is well documented, but same can not be said of TMA-producing bacteria. This work aimed to identify TMA-producing genera in human intestinal microbiota. We retrieved the genomes of human-associated microorganisms from the Human Microbiome Project database comprising 1751 genomes, Unified Human Gastrointestinal Genome collection consisting 4644 gut prokaryotes, recapitulated 4930 species-level genome bins and public gut metagenomic data of 2134 individuals from 11 populations. By sequence searching, 216 TMA-lyase-containing species from 102 genera were found to contain the homologous sequences of cntA/B, yeaW/X, and/or cutC/D. We identified 13 strains from 5 genera with cntA sequences, and 30 strains from 14 genera with cutC showing detectable relative abundance in healthy individuals. Lachnoclostridium (p = 2.9e−05) and Clostridium (p = 5.8e−04), the two most abundant cutC-containing genera, were found to be much higher in atherosclerotic patients compared with healthy persons. Upon incubation with choline (substrate), L. saccharolyticum effectively transformed it to TMA at a rate higher than 98.7% while that for C. sporogenes was 63.8–67.5% as detected by liquid chromatography-triple quadrupole mass spectrometry. In vivo studies further showed that treatment of L. saccharolyticum and choline promoted a significant increase in TMAO level in the serum of ApoE−/− mice with obvious accumulation of aortic plaque in same. This study discloses the significance and efficiency of the gut bacterium L. saccharolyticum in transforming choline to TMA and consequently promoting the development of atherosclerosis.
A novel and regioselective approach to carbonyl-containing alkyl chlorides via silver-catalyzed ring-opening chlorination of cycloalkanols is reported. Concurrent C(sp(3))-C(sp(3)) bond cleavage and C(sp(3))-Cl bond formation efficiently occur with good yields under mild conditions, and the chlorinated products are readily transformed into other useful synthetic intermediates and drugs. The reaction features complete regioselectivity, high efficiency, and excellent practicality.
A copper‐catalyzed remote C−H amination of 8‐aminoquinoline scaffolds on the C5 position is described. The protocol employs commercially available N‐fluorobenzenesulfonimide (NFSI) as the amination reagent and shows broad substrate scope, providing various 5‐aminated quinolines in moderate to excellent yields under mild conditions. These reactions feature complete regioselectivity, operational simplicity, and high efficiency.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.