BackgroundEpilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable.MethodologyThis study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching.Principal FindingsWe obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection.ConclusionWe report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system.
Biomedical data analytic system has played an important role in doing the clinical diagnosis for several decades. Today, it is an emerging research area of analyzing these big data to make decision support for physicians. This paper presents a parallelized web-based tool with cloud computing service architecture to analyze the epilepsy. There are many modern analytic functions which are wavelet transform, genetic algorithm (GA), and support vector machine (SVM) cascaded in the system. To demonstrate the effectiveness of the system, it has been verified by two kinds of electroencephalography (EEG) data, which are short term EEG and long term EEG. The results reveal that our approach achieves the total classification accuracy higher than 90%. In addition, the entire training time accelerate about 4.66 times and prediction time is also meet requirements in real time.
Multiclass classification is an important technique to many complex bioinformatics problems. However, their performance is limited by the computation power. Based on the Apache Hadoop design framework, this study proposes a two layer architecture that exploits the inherent parallelism of GA-SVM classification to speed up the work. The performance evaluations on an mRNA benchmark cancer dataset have reduced 86.55% features and raised accuracy from 97.53% to 98.03%. With a user-friendly web interface, the system provides researchers an easy way to investigate the unrevealed secrets in the fast-growing repository of bioinformatics data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.