In recent years, garbage classification has become a hot topic in China, and legislation on garbage classification has been proposed. Proper garbage classification and improving the recycling rate of garbage can protect the environment and save resources. In order to effectively achieve garbage classification, a lightweight garbage object detection model based on deep learning techniques was designed and developed in this study, which can locate and classify garbage objects in real-time using embedded devices. Focusing on the problems of low accuracy and poor real-time performances in garbage classification, we proposed a lightweight garbage object detection model, YOLOG (YOLO for garbage detection), which is based on accurate local receptive field dilation and can run on embedded devices at high speed and with high performance. YOLOG improves on YOLOv4 in three key ways, including the design of DCSPResNet with accurate local receptive field expansion based on dilated–deformable convolution, network structure simplification, and the use of new activation functions. We collected the domestic garbage image dataset, then trained and tested the model on it. Finally, in order to compare the performance difference between YOLOG and existing state-of-the-art algorithms, we conducted comparison experiments using a uniform data set training model. The experimental results showed that YOLOG achieved AP0.5 of 94.58% and computation of 6.05 Gflops, thus outperformed YOLOv3, YOLOv4, YOLOv4-Tiny, and YOLOv5s in terms of comprehensive performance indicators. The network proposed in this paper can detect domestic garbage accurately and rapidly, provide a foundation for future academic research and engineering applications.
The traditional manual inspection is gradually replaced by the unmanned aerial vehicles (UAV) automatic inspection. However, due to the limited computational resources carried by the UAV, the existing deep learning-based algorithm needs a large amount of computational resources, which makes it impossible to realize the online detection. Moreover, there is no effective online detection system at present. To realize the high-precision online detection of electrical equipment, this paper proposes an SSD (Single Shot Multibox Detector) detection algorithm based on the improved Dual network for the images of insulators and spacers taken by UAVs. The proposed algorithm uses MnasNet and MobileNetv3 to form the Dual network to extract multi-level features, which overcomes the shortcoming of single convolutional network-based backbone for feature extraction. Then the features extracted from the two networks are fused together to obtain the features with high-level semantic information. Finally, the proposed algorithm is tested on the public dataset of the insulator and spacer. The experimental results show that the proposed algorithm can detect insulators and spacers efficiently. Compared with other methods, the proposed algorithm has the advantages of smaller model size and higher accuracy. The object detection accuracy of the proposed method is up to 95.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.