Mitochondria are dynamic cellular organelles that consistently migrate, fuse, and divide to modulate their number, size, and shape. In addition, they produce ATP, reactive oxygen species, and also have a biological role in antioxidant activities and Ca2+ buffering. Mitochondria are thought to play a crucial biological role in most neurodegenerative disorders. Neurons, being high-energy-demanding cells, are closely related to the maintenance, dynamics, and functions of mitochondria. Thus, impairment of mitochondrial activities is associated with neurodegenerative diseases, pointing to the significance of mitochondrial functions in normal cell physiology. In recent years, considerable progress has been made in our knowledge of mitochondrial functions, which has raised interest in defining the involvement of mitochondrial dysfunction in neurodegenerative diseases. Here, we summarize the existing knowledge of the mitochondrial function in reactive oxygen species generation and its involvement in the development of neurodegenerative diseases.
Establishment of efficient genome editing tools is essential for fundamental research, genetic engineering, and gene therapy. Successful construction and application of transcription activator-like effector nucleases (TALENs) in several organisms herald an exciting new era for genome editing. We describe the production of two active TALENs and their successful application in the targeted mutagenesis of silkworm, Bombyx mori, whose genetic manipulation methods are parallel to those of Drosophila and other insects. We will also show that the simultaneous expression of two pairs of TALENs generates heritable large chromosomal deletion. Our results demonstrate that (i) TALENs can be used in silkworm and (ii) heritable large chromosomal deletions can be induced by two pairs of TALENs in whole organisms. The generation and the high frequency of TALENs-induced targeted mutagenesis in silkworm will promote the genetic modification of silkworm and other insect species.
The middle silk gland (MSG) of silkworm is thought to be a potential host for mass-producing valuable recombinant proteins. Transgenic MSG expression systems based on the usage of promoter of sericin1 gene (sericin-1 expression system) have been established to produce various recombinant proteins in MSG. However, further modifying the activity of the sericin-1 expression system to yield higher amounts of recombinant proteins is still necessary. In this study, we provide an alternative modification strategy to construct an efficient sericin-1 expression system by using the hr3 enhancer (hr3 CQ) from a Chongqing strain of the Bombyx mori nuclear polyhedrosis virus (BmNPV) and the 3'UTRs of the fibroin heavy chain (Fib-HPA), the fibroin light chain (Fib-LPA), and Sericin1 (Ser1PA) genes. We first analyzed the effects of these DNA elements on expression of luciferase, and found that the combination of hr3 CQ and Ser1PA was most effective to increase the activity of luciferase. Then, hr3 CQ and Ser1PA were used to modify the sericin1 expression system. Transgenic silkworms bearing these modified sericin1 expression vectors were generated by a piggyBac transposon mediated genetic transformation method. Our results showed that mRNA level of DsRed reporter gene in transgenic silkworms containing hr3 CQ and Ser1PA significantly increased by 9 fold to approximately 83 % of that of endogenous sericin1. As the results of that, the production of recombinant RFP increased by 16 fold to 9.5 % (w/w) of cocoon shell weight. We conclude that this modified sericin-1 expression system is efficient and will contribute to the MSG as host to mass produce valuable recombinant proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.