This article describes a scalar field topology (SFT)‐based methodology for the interactive characterization and analysis of hotspots for density fields defined on a regular grid. In contrast to the common approach of simply identifying hotspots as areas that exceed a chosen density threshold, SFT provides various data abstractions—such as the merge tree and the Morse complex—to characterize hotspots and their boundaries at multiple scales. Moreover, SFT enables the ranking of hotspots based on analyst‐defined importance measures, which also makes it possible to explore hotspots using a level‐of‐detail approach. We present a visual analytics system to support analysts in hotspot analysis and abstraction using SFT, and we demonstrate the merit of the proposed SFT‐based methodology on two crime datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.