A deep neural network (DNN) based power control method is proposed, which aims at solving the non-convex optimization problem of maximizing the sum rate of a fading multi-user interference channel. Towards this end, we first present PCNet, which is a multi-layer fully connected neural network that is specifically designed for the power control problem. A key challenge in training a DNN for the power control problem is the lack of ground truth, i.e., the optimal power allocation is unknown.To address this issue, PCNet leverages the unsupervised learning strategy and directly maximizes the sum rate in the training phase. We then present PCNet+, which enhances the generalization capacity of PCNet by incorporating noise power as an input to the network. Observing that a single PCNet(+) does not universally outperform the existing solutions, we further propose ePCNet(+), a network ensemble with multiple PCNets(+) trained independently. Simulation results show that for the standard symmetric K-user Gaussian interference channel, the proposed methods can outperform all state-of-the-art power control solutions under a variety of system configurations. Furthermore, the performance improvement of ePCNet comes with a reduced computational complexity.
Abstract. Lossy image and video compression algorithms yield visually annoying artifacts including blocking, blurring, and ringing, especially at low bit-rates. To reduce these artifacts, post-processing techniques have been extensively studied. Recently, inspired by the great success of convolutional neural network (CNN) in computer vision, some researches were performed on adopting CNN in post-processing, mostly for JPEG compressed images. In this paper, we present a CNN-based post-processing algorithm for High Efficiency Video Coding (HEVC), the state-of-theart video coding standard. We redesign a Variable-filter-size Residuelearning CNN (VRCNN) to improve the performance and to accelerate network training. Experimental results show that using our VRCNN as post-processing leads to on average 4.6% bit-rate reduction compared to HEVC baseline. The VRCNN outperforms previously studied networks in achieving higher bit-rate reduction, lower memory cost, and multiplied computational speedup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.