In this paper, we propose iterative inner/outer approximations based on a recent notion of block factor-widthtwo matrices for solving semidefinite programs (SDPs). Our inner/outer approximating algorithms generate a sequence of upper/lower bounds of increasing accuracy for the optimal SDP cost. The block partition in our algorithms offers flexibility in terms of both numerical efficiency and solution quality, which includes the approach of scaled diagonally dominance (SDD) approximation as a special case. We discuss both the theoretical results and numerical implementation in detail. Our main theorems guarantee that the proposed iterative algorithms generate monotonically decreasing upper (increasing lower) bounds. Extensive numerical results confirm our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.