ObjectivesThis study aims to intensively evaluate the effectiveness of mindfulness-based intervention (MBI) on mental illness risks (including psychological distress, prolonged fatigue, and perceived stress) and job strain (job control and job demands) for employees with poor mental health.MethodsA longitudinal research design was adopted. In total, 144 participants were randomized to the intervention group or the control group. The intervention group participated in MBI for eight weeks. Measurements were collected for both groups at five time points: at pre-intervention (T1), at mid-intervention (T2), at the completion of intervention (T3), four weeks after intervention (T4), and eight weeks after intervention (T5). Data were analyzed according to the intention-to-treat principle. A linear mixed model with two levels was employed to analyze the repeated measurement data.ResultsCompared with the control group, the intercepts (means at T3) for the intervention group were significantly lower on psychological distress, prolonged fatigue, and perceived stress when MBI was completed. Even with the demographic variables controlled, the positive effects remained. For growth rates of prolonged fatigue and perceived stress, participants in the intervention group showed a steeper decrease than did the participants in the control group. Regarding job strain, although the intercept (mean at T3) of job demands showed a significant decline when BMI was completed, the significance disappeared when the demographic variables were controlled. Moreover, the other results for job control and job demands did not show promising findings.ConclusionAs a workplace health promotion program, the MBI seems to have potential in improving mental illness risks for employees with poor mental health. However, there was insufficient evidence to support its effect on mitigating job strain. Further research on maintaining the positive effects on mental health for the long term and on developing innovative MBI to suit job strain are recommended.Trial RegistrationClinicalTrials.gov NCT02241070
Large-scale functional genomics studies for malaria vaccine and drug development will depend on the generation of molecular tools to study protein expression. We examined the feasibility of a high-throughput cloning approach using the Gateway system to create a large set of expression clones encoding Plasmodium falciparum single-exon genes. Master clones and their ORFs were transferred en masse to multiple expression vectors. Target genes (n = 303) were selected using specific sets of criteria, including stage expression and secondary structure. Upon screening four colonies per capture reaction, we achieved 84% cloning efficiency. The genes were subcloned in parallel into three expression vectors: a DNA vaccine vector and two protein expression vectors. These transfers yielded a 100% success rate without any observed recombination based on single colony screening. The functional expression of 95 genes was evaluated in mice with DNA vaccine constructs to generate antibody against various stages of the parasite. From these, 19 induced antibody titers against the erythrocytic stages and three against sporozoite stages. We have overcome the potential limitation of producing large P. falciparum clone sets in multiple expression vectors. This approach represents a powerful technique for the production of molecular reagents for genome-wide functional analysis of the P. falciparum genome and will provide for a resource for the malaria resource community distributed through public repositories.
Immunogenic cell death (ICD) is a specific kind of cell death that stimulates the immune system to combat cancer cells. Ultrasound (US)-controlled targeted release of drugs by liposome-microbubble complexes is a promising approach due to its non-invasive nature and visibility through ultrasound imaging. However, it is not known whether this approach can enhance ICD induced by drugs, such as doxorubicin. Herein, we prepared a doxorubicin-liposome-microbubble complex (MbDox), and the resultant MbDox was then characterized and tested for US-controlled release of Dox (MbDox+US treatment) to enhance the induction of ICD in LL/2 and CT26 cancer cells and in syngeneic murine models. We found that MbDox+US treatment caused more cellular uptake and nuclear accumulation of Dox in tumor cells, and more accumulation of Dox in tumor tissues. Enhanced induction of ICD occurred both and. MbDox+US treatment induced more apoptosis, stronger membrane exposure and the release of ER stress proteins and DAMPs in tumor cells, and increased DC maturation . In addition, MbDox+US treatment also resulted in stronger therapeutic effects in immunocompetent mice than in immunodeficient mice. Moreover, MbDox+US enhancement of ICD was also evidenced by a higher proportion of activated CD8 T-lymphocytes but lower Treg in tumor tissues. Taken together, our results demonstrate that US-controlled release of ICD inducers into nuclei using liposome-microbubble complexes may be an effective approach to enhance the induction of ICD for tumor treatment.
Rationale: Cardenolides have potential as anticancer drugs. 3′-epi-12β-hydroxyfroside (HyFS) is a new cardenolide structure isolated by our research group, but its molecular mechanisms remain poorly understood. This study investigates the relationship between its antitumor activities and autophagy in lung cancer cells.Methods: Cell growth and proliferation were detected by MTT, lactate dehydrogenase (LDH) release, 5-ethynyl-20-deoxyuridine (EDU) and colony formation assays. Cell apoptosis was detected by flow cytometry. Autophagic and signal proteins were detected by Western blotting. Markers of autophagy and autophagy flux were also detected by immunofluorescence, transmission electron microscopy and acridine orange staining. Real time RT-PCR was used to analyze the gene expression of Hsp90. Hsp90 ubiquitination was detected by coimmunoprecipitation. The antitumore activities of HyFS were observed in nude mice.Results: HyFS treatment inhibited cell proliferation and induced autophagy in A549 and H460 lung cancer cells, but stronger inhibition of cell proliferation and induction of cell apoptosis were shown when HyFS-mediated autophagy was blocked. The Hsp90/Akt/mTOR axis was found to be involved in the activation of HyFS-mediated autophagy. Evidence of direct interaction between Hsp90 and Akt was observed. HyFS treatment resulted in decreased levels of heat shock protein 90 (Hsp90) and phosphorylated Akt, overexpression of Hsp90 increased activation of autophagy, and inhibition of Hsp90 expression decreased autophagy. In addition, ubiquitin-mediated degradation of Hsp90 and subsequent dephosphorylation of its client protein Akt were also found in HyFS-treated lung cancer cells. Moreover, combination treatment with HyFS and chloroquine showed remarkably increased tumor inhibition in both A549- and H460-bearing mice.Conclusion: Our results demonstrate that HyFS induced cytoprotective autophagy through ubiquitin-mediated degradation of Hsp90, which further blocked the Akt/mTOR pathway in lung cancer cells. Thus, a combination of a HyFS-like cardenolide and an autophagic inhibitor is a potential alternative approach for the treatment of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.