piperidine-3-carboxylic acid), with intrinsic proton conductivity has been synthesized and characterized.Structure analysis shows that compound 1 possesses protonated tertiary amines as proton carriers and hydrogen-bonding chains served as proton-conducting pathways. Further, MOF-polymer composite membranes have been fabricated via assembling polymer PVP with different contents of rod-like 1 submicrometer crystals. Interestingly, the proton conductivity of this composite membrane containing 50 wt% 1 is rapidly increased, compared with that of pure submicrometer crystals at 298 K and $53% RH. Therefore, it is feasible to introduce humidification of PVP into composite membranes to enhance low-humidity proton conductivity; and humidified PVP with adsorbed water molecules plays an important role in proton conduction indicated by the results of water physical sorption and TG/DTG analyses. This study may offer a facile strategy to prepare a variety of solid electrolyte materials with distinctive proton-conducting properties under a low humidity.
Hydrogen‐based energy is a promising renewable and clean resource. Thus, hydrogen selective microporous membranes with high performance and high stability are demanded. Novel NH2‐MIL‐53(Al) membranes are evaluated for hydrogen separation for this goal. Continuous NH2‐MIL‐53(Al) membranes have been prepared successfully on macroporous glass frit discs assisted with colloidal seeds. The gas sorption ability of NH2‐MIL‐53(Al) materials is studied by gas adsorption measurement. The isosteric heats of adsorption in a sequence of CO2 > N2 > CH4 ≈ H2 indicates different interactions between NH2‐MIL‐53(Al) framework and these gases. As‐prepared membranes are measured by single and binary gas permeation at different temperatures. The results of singe gas permeation show a decreasing permeance in an order of H2 > CH4 > N2 > CO2, suggesting that the diffusion and adsorption properties make significant contributions in the gas permeation through the membrane. In binary gas permeation, the NH2‐MIL‐53(Al) membrane shows high selectivity for H2 with separation factors of 20.7, 23.9 and 30.9 at room temperature (288 K) for H2 over CH4, N2 and CO2, respectively. In comparison to single gas permeation, a slightly higher separation factor is obtained due to the competitive adsorption effect between the gases in the porous MOF membrane. Additionally, the NH2‐MIL‐53(Al) membrane exhibits very high permeance for H2 in the mixtures separation (above 1.5 × 10−6 mol m−2 s−1 Pa−1) due to its large cavity, resulting in a very high separation power. The details of the temperature effect on the permeances of H2 over other gases are investigated from 288 to 353 K. The supported NH2‐MIL‐53(Al) membranes with high hydrogen separation power possess high stability, resistance to cracking, temperature cycling and show high reproducibility, necessary for the potential application to hydrogen recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.