Immunofluorescence studies have revealed that H2AX is phosphorylated at the sites of DNA double-strand breaks induced by ionizing radiation and is required for recruitment of repair factors into nuclear foci after DNA damage. Therefore, the function of H2AX is believed to be associated primarily with repair of DNA damage. Here, we report a function of H2AX in cellular apoptosis. Our data showed that H2AX is phosphorylated by UVA-activated JNK. We also provided evidence showing that UVA induces caspase-3 and caspase-activated DNase (CAD) activity in both H2AX wild-type and H2AX knockout mouse embryonic fibroblasts (MEFs). However, DNA fragmentation occurred only in H2AX wild-type MEFs. Furthermore, H2AX phosphorylation was critical for DNA degradation triggered by CAD in vitro. Taken together, these data indicated that H2AX phosphorylation is required for DNA ladder formation, but not for the activation of caspase-3; and the JNK/H2AX pathway cooperates with the caspase-3/CAD pathway resulting in cellular apoptosis.
TRAF4 is an adapter protein overexpressed in certain cancers but its contributions to tumorigenesis are unclear. In lung cancer cells and primary lung tumors, we found that TRAF4 is overexpressed. RNAi-mediated attenuation of TRAF4 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth and tumor development in a xenograft mouse model. Unexpectedly, we discovered that TRAF4, but not Skp2, was required for activation of the pivotal cell survival kinase Akt through ubiquitination. Furthermore, TRAF4 attenuation impaired glucose metabolism by inhibiting expression of Glut1 and HK2 mediated by the Akt pathway. Overall, our work suggests that TRAF4 offers a candidate molecular target for lung cancer prevention and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.