Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominantly located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron-Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.
Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.
Improving aggregate formation and stability of bauxite residue is essential for the development of a soil on the residue. Effects of gypsum and vermicompost on related chemical and physical conditions of bauxite residue were studied in a laboratory incubation experiment. The addition of gypsum at 2% and 4% w/w reduced pH and exchangeable sodium percentage while increasing exchangeable calcium content. The addition of vermicompost reduced bulk density while significantly increasing porosity and total organic carbon. Vermicompost had a positive effect on the formation and stabilization of water‐stable aggregates in the residue, while gypsum was more beneficial to silt‐sized microaggregate flocculation. Amendments also enhanced the erosion resistance of bauxite residue. Furthermore, wet sieving using the modified Le Bissonnais' method revealed that in comparison with differential clay swelling and mechanical breakdown, slaking was the major disaggregation mechanism of residue aggregates. The combination of gypsum and vermicompost converted the residue from a sheet‐like structure to a granular macroaggregated structure while converting microaggregates from a grain to a granular or prismatic structure. The findings of this work suggest that application of gypsum and vermicompost to bauxite residue may directly influence aggregate size distribution and its micromorphology, resulting in the improvement of both aggregate stability and structure. Copyright © 2017 John Wiley & Sons, Ltd.
Production of hydrogen peroxide (H 2 O 2 ) via in situ electrochemical water oxidation possesses great potential applications in the energy and environment fields. In this work, for the first time, we reported a C,N codoped TiO 2 electrode for selective electrocatalytic water oxidation to produce H 2 O 2 in an acidic electrolyte. An electrochemical anodic oxidation method combined with postcalcination in the presence of urea was applied to fabricate such a C,N codoped TiO 2 electrode, which was evidenced by detail structural characterizations. The calcination temperature and urea atmosphere were found to play key roles in its catalytic performances; the optimized 600N sample exhibited an onset potential of 2.66 V (vs Ag/AgCl) and a Tafel slope of 51 mV dec −1 at pH 3. Under the optimal applied potential, the cumulative H 2 O 2 concentration for this sample reached 0.29 μmol L −1 cm −2 h −1 . More importantly, a simple recalcination strategy was developed to recover the deactivation electrode. This study proposed an efficient C,N codoped TiO 2 electrode toward water oxidation to selectively produce H 2 O 2 in the acidic electrolyte, which could be further used to in situ generate H 2 O 2 for the energy-and environment-related fields with water as the precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.