Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa . The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric-photonic coupled multifunctional sensing terminal, which may have great applications in human-machine interaction, soft robots, and artificial intelligence.
Ocean waves are one of the most promising renewable energy sources for large-scope applications. Recently, triboelectric nanogenerator (TENG) network has been demonstrated to effectively harvest water wave energy possibly toward large-scale blue energy. However, the absence of effective power management severely restricts the practicability of TENGs. In this work, a hexagonal TENG network consisting of spherical TENG units based on springassisted multilayered structure, integrated with a power management module (PMM), is constructed for harvesting water wave energy. The output performance of the TENG network is found to be determined by water wave frequencies and amplitudes, as well as the wave type. Moreover, with the implemented PMM, the TENG network could output a steady and continuous direct current (DC) voltage on the load resistance, and the stored energy is dramatically improved by up to 96 times for charging a capacitor. The TENG network integrated with the PMM is also applied to effectively power a digital thermo meter and a wireless transmitter. The thermometer can constantly measure the water temperature with the water wave motions, and the transmitter can send signals that enable an alarm to go off once every 10 s. This study extends the application of the power management module in the water wave energy harvesting.
Flexible electronics has attracted enormous interest in wearable electronics and human-machine interfacing. Here, a flexible organic tribotronic transistor (FOTT) without a top gate electrode has been demonstrated. The FOTT is fabricated on a flexible polyethylene terephthalate film using the p-type pentacene and poly(methyl methacrylate)/Cytop composites as the conductive channel and dielectric layer, respectively. The charge carriers can be modulated by the contact electrification between the dielectric layer and a mobile triboelectric layer. Based on the fabricated FOTT, pressure and magnetic sensors have been developed, respectively, that exhibit great sensitivity, fast response time, and excellent stability. The FOTT in this simple structure shows bright potentials of tribotronics in human-machine interaction, electronic skins, wearable electronics, intelligent sensing, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.