Antigen-presenting cells (APCs) induce T cell activation as well as T cell tolerance. The molecular basis of the regulation of this critical ‘decision’ is not well understood. Here we show that HDAC11, a member of the HDAC histone deacetylase family with no prior defined physiological function, negatively regulated expression of the gene encoding interleukin 10 (IL-10) in APCs. Overexpression of HDAC11 inhibited IL-10 expression and induced inflammatory APCs that were able to prime naive T cells and restore the responsiveness of tolerant CD4+ T cells. Conversely, disruption of HDAC11 in APCs led to upregulation of expression of the gene encoding IL-10 and impairment of antigen-specific T cell responses. Thus, HDAC11 represents a molecular target that influences immune activation versus immune tolerance, a critical ‘decision’ with substantial implications in autoimmunity, transplantation and cancer immunotherapy.
Antigen-presenting cells (APCs) can induce T cell activation as well as T cell tolerance. The molecular mechanisms by which APCs regulate this critical decision of the immune system are not well understood. Here we show that Stat3 signaling plays a critical role in the induction of antigen-specific T cell tolerance. Targeted disruption of Stat3 signaling in APCs resulted in priming of antigen-specific CD4(+) T cells in response to an otherwise tolerogenic stimulus in vivo. Furthermore, APCs devoid of Stat3 effectively break antigen-specific T cell anergy in vitro. Conversely, increased Stat3 activity in APCs led to impaired antigen-specific T cell responses. Stat3 signaling provides, therefore, a novel molecular target for manipulation of immune activation/tolerance, a central decision with profound implications in autoimmunity, transplantation, and cancer immunotherapy.
Histone deacetylases (HDACs) are involved in diverse cellular regulatory mechanisms including non-canonical functions outside the chromatin environment. Several publications have demonstrated that selective HDAC inhibitors (HDACi) can influence tumor immunogenicity and the functional activity of specific immune cells. In particular, the selective inhibition of HDAC6 has been reported to decrease tumor growth in several malignancies. However, there is still no clarity about the cellular components mediating this effect. In this study, we evaluated the HDAC6i Nexturastat A as a priming agent to facilitate the transition of the tumor microenvironment from “cold” to “hot”, and potentially augment immune check-point blockade therapies. This combination modality demonstrated to significantly reduce tumor growth in syngeneic melanoma tumor models. Additionally, we observed a complete neutralization of the up-regulation of PD-L1 and other immunosuppressive pathways induced by the treatment with anti-PD-1 blockade. This combination also showed profound changes in the tumor microenvironment such as enhanced infiltration of immune cells, increased central and effector T cell memory, and a significant reduction of pro-tumorigenic M2 macrophages. The evaluation of individual components of the tumor microenvironment suggested that the in vivo anti-tumor activity of HDAC6i is mediated by its effect on tumor cells and tumor-associated macrophages, and not directly over T cells. Overall, our results indicate that selective HDAC6i could be used as immunological priming agents to sensitize immunologically “cold” tumors and subsequently improve ongoing immune check-point blockade therapies.
The median survival for metastatic melanoma is in the realm of 8–16 months and there are few therapies that offer significant improvement in overall survival. One of the recent advances in cancer treatment focuses on epigenetic modifiers to alter the survivability and immunogenicity of cancer cells. Our group and others have previously demonstrated that pan-HDAC inhibitors induce apoptosis, cell cycle arrest and changes in the immunogenicity of melanoma cells. Here we interrogated specific HDACs which may be responsible for this effect. We found that both genetic abrogation and pharmacologic inhibition of HDAC6 decreases in vitro proliferation and induces G1 arrest of melanoma cell lines without inducing apoptosis. Moreover, targeting this molecule led to an important upregulation in the expression of tumor associated antigens and MHC class I, suggesting a potential improvement in the immunogenicity of these cells. Of note, this anti-melanoma activity was operative regardless of mutational status of the cells. These effects translated into a pronounced delay of in vivo melanoma tumor growth which was, at least in part, dependent on intact immunity as evidenced by the restoration of tumor growth after CD4+ and CD8+ depletion. Given our findings, we provide the initial rationale for the further development of selective HDAC6 inhibitors as potential therapeutic anti-melanoma agents.
Previously we demonstrated that SHIP−/− mice accept allogeneic bone marrow transplants (BMT) without significant acute graft-vs-host disease (GvHD). In this study we show that SHIP−/− splenocytes and lymph node cells are poor stimulators of allogeneic T cell responses that cause GvHD. Intriguingly, SHIP−/− splenocytes prime naive T cell responses to peptide epitopes, but, conversely, are partially impaired for priming T cell responses to whole Ag. However, dendritic cells (DC) purified from SHIP−/− splenocytes prime T cell responses to allogeneic targets, peptide epitopes, and whole Ag as effectively as SHIP+/+ DC. These findings point to an extrinsic effect on SHIP−/− DC that impairs priming of allogeneic T cell responses. Consistent with this extrinsic effect, we found that a dramatic expansion of myeloid suppressor cells in SHIP−/− mice impairs priming of allogeneic T cells. These findings suggest that SHIP expression or its activity could be targeted to selectively compromise T cell responses that mediate GvHD and graft rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.