ObjectiveThe aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population.Research Design and MethodsThe sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system.ResultsUltimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype.ConclusionsTPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms.
BackgroundThe objective of this study was to assess the effects of metformin monotherapy or combined treatment with a dipeptidyl peptidase-4 inhibitor (vildagliptin) on apelin levels in patients with type 2 diabetes mellitus.MethodsTwenty-five patients with poor glycemic control (glycosylated hemoglobin >6.5% [48 mmol/mol]) taking 1,000 mg of metformin daily and 25 healthy controls matched for age and body mass index were enrolled in this study. Anthropometric parameters, glycemic and lipid profile, insulin resistance (homeostasis model assessment of insulin resistance index), and apelin levels were measured at baseline and at 12-week and 24-week visits.ResultsAt baseline, apelin levels were higher in the T2DM patients than in the controls (1.93±1.81 ng/mL versus 6.09±4.90 ng/mL; P<0.05). After 12 weeks, when vildagliptin was added, fasting blood glucose and glycosylated hemoglobin decreased, and apelin levels increased further (from 6.09±4.90 ng/mL to 24.23±12.59 ng/mL; P<0.05). Follow-up at 24 weeks showed no further improvement in the glycemic profile and no further increase in apelin levels.ConclusionBoth metformin and vildagliptin favorably changed glycemic indices and apelin levels. For patients inadequately controlled on a low dose of metformin, addition of vildagliptin may be helpful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.