The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant–pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.
Homeodomain-leucine zipper (HD-ZIP) transcription factors are one of the plant-specific gene families involved in plant growth and response to adverse environmental conditions. However, little information is available on the HD-ZIP gene family in watermelon. In this study, forty ClHDZs were systemically identified in the watermelon genome, which were subsequently divided into four distinctive subfamilies (I–IV) based on the phylogenetic topology. HD-ZIP members in the same subfamily generally shared similar gene structures and conserved motifs. Syntenic analyses revealed that segmental duplications mainly contributed to the expansion of the watermelon HD-ZIP family, especially in subfamilies I and IV. HD-ZIP III was considered the most conserved subfamily during the evolutionary history. Moreover, expression profiling together with stress-related cis-elements in the promoter region unfolded the divergent transcriptional accumulation patterns under abiotic stresses. The majority (13/23) of ClHDZs in subfamilies I and II were downregulated under the drought condition, e.g., ClHDZ4, ClHDZ13, ClHDZ18, ClHDZ19, ClHDZ20, and ClHDZ35. On the contrary, most HD-ZIP genes were induced by cold and salt stimuli with few exceptions, such as ClHDZ3 and ClHDZ23 under cold stress and ClHDZ14 and ClHDZ15 under the salt condition. Notably, the gene ClHDZ14 was predominantly downregulated by three stresses whereas ClHDZ1 was upregulated, suggesting their possible core roles in response to these abiotic stimuli. Collectively, our findings provide promising candidates for the further genetic improvement of abiotic stress tolerance in watermelon.
Male sterility is a valuable trait for watermelon breeding, as watermelon hybrids exhibit obvious heterosis. However, the underlying regulatory mechanism is still largely unknown, especially regarding the related non-coding genes. In the present study, approximately 1035 differentially expressed genes (DEGs), as well as 80 DE-lncRNAs and 10 DE-miRNAs, were identified, with the overwhelming majority down-regulated in male-sterile floral buds. Enrichment analyses revealed that the general phenylpropanoid pathway as well as its related metabolisms was predicted to be altered in a mutant compared to its fertile progenitor. Meanwhile, the conserved genetic pathway DYT1-TDF1-AMS-MS188-MS1, as well as the causal gene ClAMT1 for the male-sterile mutant Se18, was substantially disrupted during male reproductive development. In addition, some targets of the key regulators AMS and MS188 in tapetum development were also down-regulated at a transcriptional level, such as ABCG26 (Cla004479), ACOS5 (Cla022956), CYP703A2 (Cla021151), PKSA (Cla021099), and TKPR1 (Cla002563). Considering lncRNAs may act as functional endogenous target mimics of miRNAs, competitive endogenous RNA networks were subsequently constructed, with the most complex one containing three DE-miRNAs, two DE-lncRNAs, and 21 DEGs. Collectively, these findings not only contribute to a better understanding of genetic regulatory networks underlying male sterility in watermelon, but also provide valuable candidates for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.