A facultatively anaerobic, Gram-negative, rod-shaped bacterial strain designated as LLDRA6T, was isolated from heavy metal contaminated soils collected near a ceased smelting factory at Zhuzhou, Hunan Province, China. Strain LLDRA6T has the ability to oxidize Mn(II) and generate biogenic manganese oxides. The strain can grow in a wide range of temperature from 10–42°C and pH from 5 to 10. Comparative analysis of its complete 16S rRNA gene sequence suggests that strain LLDRA6T is highly similar to species within the genus Providencia . The complete genome of LLDRA6T is 4 342 370 bp with 40.18 mol% of G+C content and contains no plasmids. In comparison to the genomes of type strains in Providencia , LLDRA6T shows average nucleotide identity values between 76.60 and 80.89 %, and digital DNA–DNA hybridization values in a range of 21.2–24.6 %. Both multilocus sequence analysis and genomic phylogenetics indicate a new taxonomic status for LLDRA6T in Providencia . Chemotaxonomic analyses for LLDRA6T show that the predominant cellular fatty acids are C16 : 0, C14 : 0 and cyclo-C17 : 0, accounting for 32.7, 16.1 and 10.3 % of total fatty acids, respectively. The polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unidentified aminolipids, one unidentified phospholipid and three unidentified lipids. Within the cell wall, ribose and meso-diaminopimelic acid are the characteristic constituents for saccharides and amino acids, respectively. Respiratory quinones on cell membranes are composed of menaquinone (MK) and ubiquinone (coenzyme Q), including MK-8 (100.0 %), Q-7 (13.7 %) and Q-8 (86.3 %). Moreover, the positive results from d-lyxose and d-mannitol fermentation tests indicate that LLDRA6T is totally different from all the type strains within the genus Providencia . In summary, strain LLDRA6T represents a novel species in the genus Providencia , for which the name Providencia manganoxydans sp. nov. (type strain LLDRA6T=CCTCC AB 2021154T=KCTC 92091T) is proposed.
Bacterial non-enzymatic Mn(II) oxidation involving reactive oxygen species (ROS) (i.e. indirect oxidation), initially discovered from a marine alpha-proteobacterium, is believed to be of importance in controlling biogeochemical cycles. For soil-borne bacteria, however, evidence of indirect Mn(II) oxidation remains unclear. In this study, the indirect Mn(II) oxidation was evidenced in a soil-borne bacterium, Providencia sp. LLDRA6. First, with and without 50 mM of Mn(II) exposure for LLDRA6, 300 differentially expressed genes were found to be linked to Mn(II) exposure via transcriptome sequencing. Among them, an operon, responsible for phenylacetic acid catabolism, was sharply upregulated in transcription, drawing us a special attention since its transcriptional upregulation has recently shown to be important for withstanding ROS. Next, a uorometric probe, 2′,7′-Dichloro uorescin diacetate (DCFDA), was used to qualitatively detect ROS from cells, showing a distinct increase in uorescence intensities of ROS during Mn(II) exposure. Further, concentrations of superoxide and hydrogen peroxide from cells were detected respectively with and without Mn(II) exposure, exhibiting that when Mn(II) oxidation occurred, superoxide concentration signi cantly increased but hydrogen peroxide concentration signi cantly decreased. Particularly, superoxide produced by LLDRA6 was proven to be the oxidant for Mn(II) in the formation of Mn oxides. Finally, we predicted links between phenylacetic acid metabolism pathway and ROS during Mn(II) exposure, proposing that the excessive ROS, generated in response to Mn(II) exposure, transcriptionally activate phenylacetic acid catabolism presumably by increasing concentrations of highly reactive oxepins.
Bacterial non-enzymatic Mn(II) oxidation involving reactive oxygen species (ROS) (i.e. indirect oxidation), initially discovered from a marine alpha-proteobacterium, is believed to be of importance in controlling biogeochemical cycles. For soil-borne bacteria, however, evidence of indirect Mn(II) oxidation remains unclear. In this study, the indirect Mn(II) oxidation was evidenced in a soil-borne bacterium, Providencia sp. LLDRA6. First, with and without 50 mM of Mn(II) exposure for LLDRA6, 300 differentially expressed genes were found to be linked to Mn(II) exposure via transcriptome sequencing. Among them, an operon, responsible for phenylacetic acid catabolism, was sharply upregulated in transcription, drawing us a special attention since its transcriptional upregulation has recently shown to be important for withstanding ROS. Next, a fluorometric probe, 2′,7′-Dichlorofluorescin diacetate (DCFDA), was used to qualitatively detect ROS from cells, showing a distinct increase in fluorescence intensities of ROS during Mn(II) exposure. Further, concentrations of superoxide and hydrogen peroxide from cells were detected respectively with and without Mn(II) exposure, exhibiting that when Mn(II) oxidation occurred, superoxide concentration significantly increased but hydrogen peroxide concentration significantly decreased. Particularly, superoxide produced by LLDRA6 was proven to be the oxidant for Mn(II) in the formation of Mn oxides. Finally, we predicted links between phenylacetic acid metabolism pathway and ROS during Mn(II) exposure, proposing that the excessive ROS, generated in response to Mn(II) exposure, transcriptionally activate phenylacetic acid catabolism presumably by increasing concentrations of highly reactive oxepins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.