The development of organic electro-optic (EO) materials that concurrently possess a high electro-optic coefficient (r 33 ), high index of refraction, and long-term or high-temperature stability of chromophore alignment has been a crucial goal. To address this challenge, we developed a crosslinkable EO system consisting of two chromophores, HLD1 and HLD2, which can be electric field poled and then thermally crosslinked in situ to form a stable EO material. This approach avoids the necessity for nonlinear optically inactive materials such as polymers or small molecule cross-linkers, thus resulting in high chromophore density (>5 × 10 20 molecules/cm 3 ) and high index of refraction (n = 1.89 at 1310 nm) for HLD1/HLD2. Different ratios of HLD1 and HLD2 were evaluated to optimize poling efficiency and thermal stability of the poling-induced order. With 2:1 HLD1/HLD2 (wt/wt), a maximum r 33 of 290 ± 30 pm/V was achieved in a cross-linked film. Thermal stability tests showed that after heating to 85 °C for 500 h, greater than 99% of the initial r 33 value was maintained. This combination of large EO activity, high index of refraction, and long-term alignment stability is an important breakthrough in EO materials. HLD1/HLD2 can also be poled without the subsequent cross-linking step, and even larger maximum r 33 (460 ± 30 pm/V) and n 3 r 33 figure of merit (3100 ± 200 pm/V) were achieved. Hyperpolarizabilities of HLD and control molecules were analyzed by hyper-Rayleigh scattering and computational modeling with good agreement, and they help explain the high acentric order achieved during poling.
A strong modifiable double donor based on Bis(N-Ethyl-N-hydroxyethyl)aniline -derivatived structure was developed and applied to nonlinear optical materials for the first time. Three isolation groups were introduced into the donor...
Four nonlinear optical chromophores A–D functionalized with different isolation groups on both the donor and bridge sections of the chromophores have been synthesized and systematically investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.