As one of the most predominant interannual variabilities, the Indian Ocean Dipole (IOD) exerts great socio-economic impacts globally, especially on Asia, Africa, and Australia. While enormous efforts have been made since its discovery to improve both climate models and statistical methods for better prediction, current skills in IOD predictions are mostly limited up to three months ahead. Here, we challenge this long-standing problem using a multi-task deep learning model that we name MTL-NET. Hindcasts of the IOD events during the past four decades indicate that the MTL-NET can predict the IOD well up to 7-month ahead, outperforming most of world-class dynamical models used for comparison in this study. Moreover, the MTL-NET can help assess the importance of different predictors and correctly capture the nonlinear relationships between the IOD and predictors. Given its merits, the MTL-NET is demonstrated to be an efficient model for improved IOD prediction.
In this study, we train a convolutional neural network (CNN) model using a selection of Coupled Model Intercomparison Project (CMIP) phase 5 and 6 models to investigate the predictability of the sea surface temperature (SST) variability off the Sumatra-Java coast in the tropical southeast Indian Ocean, the eastern pole of the Indian Ocean Dipole (IOD). Results show that the CNN model can beat the persistence of the interannual SST variability, such that the eastern IOD (EIOD) SST variability can be forecast up to 6 months in advance. Visualizing the CNN model using a gradient weighted class activation map shows that the strong positive IOD events (cold EIOD SST anomalies) can stem from different processes: internal Indian Ocean dynamics were associated with the 1994 positive IOD, teleconnection from the equatorial Pacific was important in 1997, and cooling off the Australian coast in the southeast Indian Ocean contributed to the 2019 positive IOD. The CNN model overcomes the winter prediction barrier of the IOD, to a large extent due to the frequent transition from a warm state of the Indian Ocean to a negative IOD condition (warm EIOD SST anomalies) over the boreal winter to the following spring period. The forecasting skills of the CNN model are on par with predictions from a coupled seasonal forecasting model (ACCESS-S2), even outperforming this dynamic model in seasons leading to the IOD peaks. The ability of the CNN model to identify key dynamic drivers of the EIOD SST variability suggests that the CMIP models can capture the internal Indian Ocean variability and its teleconnection with the Pacific climate variability.
As most global climate models suffer from large biases in simulating/predicting summer precipitation over China, it is of great importance to develop suitable bias-correction methods. This study proposes two pathways of bias-correction with deep learning (DL) models incorporated. One is the deterministic pathway (DP), in which the bias correction is directly applied to the precipitation forecasts. The other one, namely the probability pathway (PP), corrects the forecasted precipitation anomalies using a conditional probability method before being added to the observational climatology. These two pathways have been applied to correct the precipitation forecasts based on a global climate model prediction system NUIST-CFS1.0. The application of DL models in the both pathways yield higher resolution of corrected predictions than the uncorrected ones. Both pathways improve summer precipitation predictions at 4-month lead. Moreover, the DP correction shows a better performance in predicting extreme precipitation, while the PP is proficient in correcting the spatial pattern of precipitation anomalies over China. The present results highlight the importance of the application of appropriate correction strategy for different prediction purposes.
<p>Variations in the El Ni&#241;o/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts. Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic. Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO forecasts for lead times of up to one and a half years. To circumvent the limited amount of observation data, we use transfer learning to train a convolutional neural network (CNN) first on historical simulations and subsequently on reanalysis from 1871 to 1973. During the validation period from 1984 to 2017, the all-season correlation skill of the Nino3.4 index of the CNN model is much higher than those of current state-of-the-art dynamical forecast systems. The CNN model is also better at predicting the detailed zonal distribution of sea surface temperatures, overcoming a weakness of dynamical forecast models. A heat map analysis indicates that the CNN model predicts ENSO events using physically reasonable precursors. The CNN model is thus a powerful tool for both the prediction of ENSO events and for the analysis of their associated complex mechanisms.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.