Nanoparticle tracking analysis (NTA) represents one essential technology to characterize diffusing nanoscale objects. Herein, uncovering dynamic processes and high‐precision measurements requires tracks with thousands of frames to reach high statistical significance, ideally at high frame rates. Optical fibers with nanochannels are used for NTA, successfully demonstrating acquisition of trajectories of fast diffusion nano‐objects with 100 000 frames. Due to the spatial limitation of the central nanofluidic channel, diffusion of objects illuminated by the core mode is confined, enabling the recording of Brownian motion over extraordinarily long time scales at high frame rates. The resulting benefits are discussed on a representative track of a gold nanosphere diffusing in water in over nearly 100 000 frames at 2 kHz frame rate. In addition to the verification of the fiber‐based NTA using two data processing methods, a segmented analysis reveals a correlation between precision of determined diameter and continuous time interval (i.e., number of frames per subtrajectory). The presented results demonstrate the capabilities of fiber‐based NTA in terms of 1) determining diameters with extraordinary high precision of single species and 2) monitoring dynamic processes of the object or the fluidic environment, both of which are relevant within biology, microrheology, and nano‐object characterization.
In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000 μm when the bending radius is ≥10 cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 10 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.
In this work, a novel design of a high birefringence photonic crystal fiber (HB-PCF) with multimode and low confinement loss is proposed. To achieve high birefringence, the core is designed as an elliptical region, which is enclosed by twelve small holes. Based on this design, replacing the two circular holes at the top and bottom of the core region with two elliptical holes can further improve the birefringence. At the wavelength of 1.55 μm, the birefringence of the fundamental mode (LP) and the second-order mode (LP) are 1.70×10 and 1.85×10, respectively. Meanwhile, the confinement losses maintain on orders of 1×10 dB/km (LP) and 1×10 dB/km (LP). After the effective refractive indices of two types of the proposed HB-PCF are calculated by the finite element method, the birefringence, confinement loss, bending loss, dispersion, and nonlinear coefficient are studied. These results reveal that the HB-PCF might be applied for polarization-maintaining and nonlinear optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.