Metalens are planar lenses composed of the subwavelength arrays, which have unconventional and versatile functionalities to manipulate the light fields compared with the traditional lens. It is noted that the most metalens are designed in a monochromatic mode in the visible or mid-infrared range (mid-IR), however, the broadband range is needed in many practical applications, such as spectroscopy, sensing, and imaging. Here, we design and demonstrate a broadband achromatic dielectric metalens in the mid-IR range of 4 µm–5 µm for near diffraction-limited (1.0λ) focusing. The broadband achromatic propagation and focusing of the metalens are designed and simulated by constructing and optimizing the phase profile. The Pancharatnam-Berry (P-B) phases of all the elements contribute to the main phase increment of the whole phase profile of the metalens. The additional phase is constructed and optimized by using the random search algorithm to obtain the optimized size of all the elements. The focusing efficiency of the achromatic metalens is also optimized and averaged as the result of phase optimization within a wide band for the building elements, while it is lowered comparing with the regular metalens without broadband achromatic designing. Using this combined designing approach, various flat achromatic devices with the broadband metalens can find a new way for full-color detection and imaging.
The current inverter is the core component of the helicopter transient electromagnetic (HTEM) detection system. It should meet the concerns of low loss, high power, and fast turn-OFF time. This article proposes a new circuit topology based on nine-level inverter technology to overcome the drawbacks of typical PWM (pulse width modulation) inverters, such as switching losses and harmonics. This circuit topology overcomes the shortcomings of the traditional single constant voltage clamp circuit in which the turn-OFF time is not adjustable. Using an inverter with the proposed topology is able to avoid the complex PWM control method and switching loss. In this way, the current rising edge and falling edge of this inverter are also improved effectively. The proposed inverter has adjustable turn-ON-time and turn-OFF time, which is significantly different from the conventional single-clamp inverter. Through subsequent experiments, the inverter proved to have the capability of generating trapezoidal current waveforms. Moreover, by modifying the FPGA (Field Programmable Gate Array) control program, three different turn-OFF times are achieved. The nine-level inverter has a peak current of 1.5 A with an adjustable turn-OFF time from 129 μs to 162 μs. Moreover, the switching frequency of the inverter is reduced from 10 kHz to below 100 Hz. The experimental results further demonstrate that it achieves lower switching losses and more flexible transmission. Our work in this article provides an efficient way to improve the performance of HTEM detection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.