Electrical and thermal transport through metal point contacts, a key issue in the design and operation of various engineering devices, is of great recent interest. The effective Lorenz number (L), which relates the thermal to electrical conductance of point contacts, could provide valuable information on the relative contribution of electrons and phonons to thermal transport. Through measuring electrical and thermal transport across point contacts between silver nanowires, we report that L significantly deviates from the Sommerfeld value by up to 5.2 times and exhibits nonmonotonic variation with temperature. Analyses show that these observations are due to the more important phonon contribution to the thermal conductance of the point contact as Sharvin resistance greatly hinders electron transport, which is further confirmed by the size dependence of L with a higher value for a smaller contact size. These results provide critical insights into engineering designs involving point contacts between metal nanostructures.
Superdiffusive thermal transport represents a unique phenomenon in heat conduction, which is characterized by a size (L) dependence of thermal conductivity (κ) in the form of κ ∝ L β with a constant β between 0 and 1. Although superdiffusive thermal transport has been theoretically predicted for SiGe alloys, direct experimental evidence is still lacking. Here, we report on a systematic experimental study of the thickness-dependent thermal conductivity of Si0.4Ge0.6 thin films grown by molecular beam epitaxy. The cross-plane thermal conductivity of Si0.4Ge0.6 thin films spanning a thickness range from 20 to 1120 nm was measured in the temperature range 120–320 K via a differential three-omega method. Results show that the thermal conductivity follows a consistent κ ∝ t 0.26 power law with the film thickness (t) at different temperatures, providing direct experimental evidence that alloy-scattering dominated thermal transport in SiGe is superdiffusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.