We recently showed that forkhead-box class O1 (FoxO1) activation protects against high glucose-induced injury by preventing mitochondrial dysfunction in the rat kidney cortex. In addition, FoxO1 has been reported to mediate putative kinase 1 (PINK1) transcription and promote autophagy in response to mitochondrial oxidative stress in murine cardiomyocytes. In this study, we ascertained whether overexpressing FoxO1 in the kidney cortex reverses preestablished diabetic nephropathy in animal models. The effect of FoxO1 on mitophagy signaling pathways was evaluated in mouse podocytes. In vivo experiments were performed in male KM mice. A mouse model of streptozotocin (STZ)-induced type 1 diabetes (T1D) was used, and lentiviral vectors were injected into the kidney cortex to overexpress FoxO1. A mouse podocyte cell line was treated with high concentrations of glucose and genetically modified using lentiviral vectors. We found aberrant mitochondrial morphology and reduced adenosine triphosphate production. These mitochondrial abnormalities were due to decreased mitophagy via reduced phosphatase/tensin homolog on chromosome 10-induced PINK1/Parkin-dependent signaling. FoxO1 upregulation and PINK1/Parkin pathway activation can individually restore injured podocytes in STZ-induced T1D mice. Our results link the antioxidative activity of FoxO1 with PINK1/Parkin-induced mitophagy, indicating a novel role of FoxO1 in diabetic nephropathy.
Objective. The generation of hyperglycemia-induced reactive oxygen species (ROS) is a key event in diabetic nephropathy (DN) development. Since forkhead box class O1 (FOXO1) is associated with oxidative stress and shows a positive effect on DN, its role on renal function and the underlying mechanism is still unclear. Methods. We examined the role of FOXO1 in vivo (in a transgenic diabetic mouse model overexpressing Foxo1) and in vitro (in human HK-2 cells with FOXO1 knockin (KI) and knockout (KO) cultured under high glucose). Results. Renal proximal tubular cells of kidney biopsies from patients with DN showed tubulointerstitial fibrosis and apoptosis. Accordingly, these proximal tubular injuries were accompanied by the increase of ROS generation in diabetic mice. Tissue-specific Foxo1 overexpression in transgenic mice had a protective effect on the renal function and partially reversed tubular injuries by attenuating the diabetes-induced increase in TXNIP and decrease in the TRX levels. FOXO1 knockin and knockout HK-2 cells were constructed to identify the associations between FoxO1 and TXNIP-TRX using CRISPR/CAS9. Similarly, the effects of FOXO1 KI and KO under high glucose were significantly modulated by the treatment of TRX inhibitor PX-12 and TXNIP small interfering RNA. In addition, TXNIP and TXN were identified as the direct FOXO1 transcriptional targets by chromatin immunoprecipitation. Conclusion. The regulatory role of FOXO1/TXNIP-TRX activation in DN can protect against the high glucose-induced renal proximal tubular cell injury by attenuating cellular ROS production. Modulating the FOXO1/TXNIP-TRX pathway may be a new therapeutic target in DN.
Background: Tubulointerstitial fibrosis (TIF) plays an important role in the progression of diabetic kidney disease (DKD). Forkhead box O1 (FoxO1) is involved in the regulation of metabolism and cell apoptosis, but its function in renal TIF induced by DKD is less well understood. Methods: Human kidney biopsies with DKD and normal controls were used to detect apoptosis and TIF induced by diabetes. A mouse model with kidney-specific overexpression of Pax2-3aFoxO1 was established to further investigate the functions of FoxO1 in vivo. The in vitro roles of FoxO1 were analyzed in HK-2 cells with 3aFoxO1-knockin (3aFoxO1-KI) or FoxO1-knockdown (FoxO1-KD) via CRISPR/Cas9. Western blot, immunohistochemistry, and chromatin immunoprecipitation were used to explore the underlying mechanisms. Findings: In this study, DKD patients had increased renal TIF and apoptosis. In vivo study showed that kidney-specific overexpression of Pax2-3aFoxO1 significantly reduced the expression of p-STAT1 with resultant renal functional impairment, retarding renal TIF and apoptosis in diabetic mice. Meanwhile, We observed that FoxO1-KD in HK-2 cells aggravated the expression of p-STAT1, leading to activation of epithelial-to-mesenchymal transition (EMT) and intrinsic apoptotic pathway. Conversely, EMT and apoptosis were significantly attenuated in HK-2 cells with 3aFoxO1-KI under hyperglycemic conditions. Interpretation: Taken together, these data suggest that the protection role of FoxO1 against renal TIF and apoptosis in DKD is likely in part to target STAT1 signaling, which may be a promising strategy for longterm treatment of DKD.
Schistosomiasis is endemic to many regions of the world and affects approximately 200 million people. Conventional adaptive T cell responses are considered to be the primary contributors to the pathogenesis of Schistosoma japonicum infection, leading to liver granuloma and fibrosis. However, the functional polarization of macrophages and the associated underlying molecular mechanisms during the pathogenesis of schistosomiasis remains unknown. In the present study, we found that excretory-secretory (ES) antigens derived from S. japonicum eggs can activate macrophages, which exhibit an M2b polarization. Furthermore, ES antigen-induced M2b polarization was found to be dependent on enhanced NF-κB signaling mediated by the MyD88/MAPK pathway in a TLR2-dependent manner. In addition, the cytokine profile of the liver macrophages from wild-type-infected mice are quite distinct from those found in TLR2 knockout-infected mice by quantitative PCR analysis. More importantly, the size of granuloma and the severity of the fibrosis in the livers of TLR2-/- mice were significantly reduced compared to that in WT mice. Our findings reveal a novel role for M2b polarization in the pathogenesis of schistosome infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.