Background
Current findings on the impact of weather conditions on osteoarthritis (OA) and rheumatoid arthritis (RA) are sparse and not conclusive. This study aimed to investigate the relationship between temperature change and OA/RA admission.
Methods
Daily OA/RA admission, meteorological data and pollutants from 1 January 2014 to 31 December 2017 in Hefei, China, were collected. We quantified the relationship between ambient temperature and OA/RA admission using a distributed lag nonlinear model (DLNM). Stratified analyses by gender and age were also examined.
Results
Temperature decrease was significantly associated with RA admission (25th percentile of temperature versus 50th percentile of temperature), with the acute and largest effect at current days lag (RR: 1.057, 95%CI: 1.005–1.111). However, no significant association between temperature and OA admission was observed. When conducting subgroup analyses by individual characteristics, we found that females and patients aged 41–65 years were more vulnerable to temperature decrease than males, patients aged 0–40 and ≧66 years, respectively.
Conclusions
This study suggested that temperature decrease was a risk factor for increases in RA admission. Females and patients aged 41–65 years were particularly vulnerable to the effect of temperature decrease.
Novel Pt/Bi3.4Gd0.6Ti3O12 heterojunction was synthesized by a decoration of Pt nanoparticles (PtNPs) on the surface of piezoelectric Bi3.4Gd0.6Ti3O12 (BGTO) through an impregnation process. The photocatalytic, piezo-catalytic, and piezo-photocatalytic activities of the Pt/BGTO heterojunction for methyl orange (MO) degradation were investigated under ultrasonic excitation and whole spectrum light irradiation. The internal piezoelectric field of BGTO and a plasmonic effect have been proven important for the photocatalytic activity of the heterojunctions. Pt/BGTO exhibited an optimum photocatalytic degradation performance of 92% for MO in 70 min under irradiation of whole light spectrum and ultrasonic coexcitation, and this value was about 1.41 times higher than the degradation rate under whole spectrum light irradiation alone. The PtNPs in Pt/BGTO heterojunction can absorb the incident light intensively, and induce the collective oscillation of surface electrons due to the surface plasmon resonance (SPR) effect, thus generating “hot” electron–hole pairs. The internal piezoelectric field produced in BGTO by ultrasonic can promote the separation of SPR-induced “hot” charge carriers and facilitate the production of highly reactive oxidation radicals, thus enhancing Pt/BGTO heterojunction′s photocatalytic activity for oxidizing organic dyes.
Background
Current findings on the impact of weather conditions on osteoarthritis (OA) and rheumatoid arthritis (RA) are sparse and not conclusive. This study aimed to investigate the relationship between temperature change and OA/RA admission.
Methods
Daily OA/RA admission and meteorological data from 1 January 2014 to 31 December 2017 in Hefei, China, were collected. We quantified the relationship between ambient temperature and OA/RA admission using a distributed lag nonlinear model (DLNM). The effect modifications by gender and age were also examined.
Results
Sudden temperature decrease was significantly associated with RA admission (25th percentile of temperature versus 50th percentile of temperature), with the acute and largest effect at current days lag (RR: 1.063, 95%CI: 1.010–1.118). However, no association between temperature and OA admission was observed. When conducting subgroup analyses by individual characteristics, we found that females and patients aged 41–65 years were more vulnerable to temperature decrease than males, patients aged 0–40 and ≧ 66 years, respectively.
Conclusions
This study suggested that sudden temperature decrease was a risk factor for increase RA admission. Females and patients aged 41–65 years were particularly vulnerable to the effect of temperature decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.