Device identification is of great importance in system management and network security. Especially, it is the priority in industrial internet of things (IIoT) scenario. Since there are massive devices producing various kinds of information in manufacturing process, the robustness, reliability, security and real-time control of the whole system is based on the identification of the massive IIoT devices. Previous IIoT device identification solutions are mostly based on a centralized architecture, which brings a lot of problems in scalability and security. In addition, most traditional identification systems can only identify inherent types of devices which is not suitable for the adaptive device management in IIoT. In order to solve these problems, this paper proposes a Intelligent Identification Scheme(IIS) of Massive IoT Devices, a completely distributed intelligent identification scheme of massive IIoT devices. The scheme changes the traditional centralized architecture and realizes more efficient clustering identification of massive IIoT devices. Moreover, IIS can identify more and more types of devices intelligently with the continuous learning ability since the identification model is constantly updated according to the ledger which is maintained by all gateways collaboratively. We also conduct experiments to evaluate the performance of IIS based on the data obtained from real IIoT devices, which proves that IIS is efficient in device identification and intelligent for the adaptive device management in IIoT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.