The Chinese environment is experiencing the “U-Type” course from sharp deterioration to significant improvement. In order to achieve the fundamental improvement of the ecological environment, China has implemented several relevant policies and strategies. Among them, the development of urban rail transit, as an essential measure to improve the ecological environment in China, has attracted more and more attention, but the research on the interactive coercion relationship between rail transit and the ecological environment is minimal. Therefore, this study selected ten cities opening urban rail transit before 2005 in mainland China as research objects and established an urban rail transit and ecological environment comprehensive evaluation index system. Then, the interactive coercing model and coupling coordination model were used, and the dynamic relationship between urban rail transit and the ecological environment was explored. The research results in this study showed that (1) there is an apparent interactive coercion relationship between urban rail transit and the ecological environment, and the evolution trajectory conforms to a double exponential curve. (2) From 2006 to 2019, Wuhan’s ecological environment pressure index showed a continuous downward trend. The ecological environment improved the fastest. The rest of the cities showed a trend of first rising and then falling. (3) The type of coupling coordination degree of urban rail transit and ecological environment showed a changing coordination trend from severe incoordination—slight to incoordination—basic to coordination—good. Beijing has the highest degree of overall coordinated development in urban rail transit and the ecological environment. The results of this study can provide a theoretical reference for the realisation of the virtuous circle development of rail transit and the ecological environment.
With the accelerating urbanization and steady economic development in China, the urban built-up area is expanding and the population in the core area is proliferating. The pressure of insufficient urban infrastructure, especially public transportation capacity, is becoming increasingly evident, and urban rail transit (URT) systems are crucial to the sustainable development of cities. This paper collects data related to URT and sustainable urban development (SUD) in 42 cities in China in 2020, constructs a comprehensive evaluation index system, and quantitatively analyzes the coupling coordination degree of the two systems using the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method and coupling coordination degree model. Then, the influencing factors of the coupling coordination degree of URT and SUD are analyzed by combining the grey correlation analysis method. The results of this study show that: (1) There are significant differences between URT system development and SUD in 42 cities in China. (2) The average coupling coordination between URT development and SUD is 0.4406. More than half of the cities are in the slightly unbalanced category. (3) Factors, such as resident population, income level and urban built-up area, significantly influence the coupling and coordination level of URT and SUD. It is hoped that the research in this paper will advance the in-depth research on the level of coordination between URT and SUD coupling, provide a solid basis for future URT planning and construction in China and even other countries in the world, and make the planning and construction of URT in China more scientific and reasonable, to promote the sustainable development of cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.