Abstract:Studies were conducted to demonstrate 21-aminosteroid distribution into the hydrophobic or lipid domains of biological membranes, a presumed site at which these compounds inhibit lipid peroxidation. Bovine brain microvessel endothelial cells (BMECs) were labeled with diphenylhexatriene fluorophores and interactions with cell membranes characterized with fluorescence anisotropy and lifetimes. Two 21-aminosteroids (U-74500A and U74006F) were shown to preferentially alter the fluorescence anisotropy and lifetime parameters of the diphenylhexatriene probe distributing into membranes throughout the BMECs. Little or no effect of the compounds on the fluorescence parameters of the diphenylhexatriene probe the localized on the surface of BMEC plasma membranes. By contrast, cholesterol used as a positive control altered substantially the fluorescence parameters of BMECs labeled with either diphenylhexatriene probe. Results suggest 21-aminosteroid-induced changes in the molecular packing order and drug:fluorescent probe interactions in membrane hydrophobic (or lipid) domains throughout the BMEC. Concentrations of 21-aminosteroids altering the fluorescence parameters of diphenylhexatriene labeled BMECs correspond to those concentrations of 21-aminosteroids effective in vitro in inhibition lipid peroxidation. Evidence for 21-aminosteroid association with the hydrophobic domains in brain microvessel endothelial cells. Free Rad. Biol. Med. 11, 361-371. PMID: 1797623. Publisher's official version: http://dx
Rhesus macaque monkey brain microvessel endothelial cells (BMECs) were isolated and grown in culture in an effort to establish an appropriate primate in vitro model of the endothelial component of the blood-brain barrier. The presence of Factor VIII antigen, alkaline phosphatase, gamma-glutamyl transpeptidase, lactate dehydrogenase, total protein, and the passive permeability properties was documented for both primary and passaged cultures. Primate BMECs were shown to exhibit similar morphological and biochemical properties described for other BMEC culture systems derived from other species. In addition, the passaged primate BMECs were particularly notable for the changes in enzyme activities and total protein that parallel age-dependent changes in brain capillary endothelia. This study provides further support for the possible application of BMEC culture systems in investigations of blood-brain barrier functions under normal, aging, and diseased conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.