This paper is concerned with problems of scattering of time-harmonic electromagnetic and acoustic waves from an infinite penetrable medium with a finite height modeled by the Helmholtz equation. On the lower boundary of the rough layer, the Neumann or generalized impedance boundary condition is imposed. The scattered field in the unbounded homogeneous medium is required to satisfy the upward angular-spectrum representation. Using the variational approach, we prove uniqueness and existence of solutions in the standard space of finite energy for inhomogeneous source terms, and in appropriate weighted Sobolev spaces for incident point source waves in R m (m = 2,3) and incident plane waves in R 2. To avoid guided waves, we assume that the penetrable medium satisfies certain non-trapping and geometric conditions.
Consider the problem of scattering of electromagnetic waves by a doubly periodic Lipschitz structure. The medium above the structure is assumed to be homogenous and lossless with a positive dielectric coefficient. Below the structure there is a perfect conductor with a partially coated dielectric boundary. We first establish the well-posedness of the direct problem in a proper function space and then obtain a uniqueness result for the inverse problem by extending Isakov's method.
This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves by an inhomogeneous medium with different kinds of unknown buried objects inside. By constructing a sequence of operators which are small perturbations of the far-field operator in a suitable way, we prove that each operator in this sequence has a factorization satisfying the Range Identity. We then develop an approximate factorization method for recovering the support of the inhomogeneous medium from the far-field data. Finally, numerical examples are provided to illustrate the practicability of the inversion algorithm.
This paper is concerned with direct and inverse scattering by a locally perturbed infinite plane (called a locally rough surface in this paper) on which a Neumann boundary condition is imposed. A novel integral equation formulation is proposed for the direct scattering problem which is defined on a bounded curve (consisting of a bounded part of the infinite plane containing the local perturbation and the lower part of a circle) with two corners and some closed smooth artificial curve. It is a nontrivial extension of our previous work on direct and inverse scattering by a locally rough surface from the Dirichlet boundary condition to the Neumann boundary condition [SIAM J. Appl. Math., 73 (2013), pp. 1811-1829. For the Dirichlet boundary condition, the integral equation obtained is uniquely solvable in the space of bounded continuous functions on the bounded curve, and it can be solved efficiently by using the Nyström method with a graded mesh. However, the Neumann condition case leads to an integral equation which is solvable in the space of squarely integrable functions on the bounded curve rather than in the space of bounded continuous functions, making the integral equation very difficult to solve numerically. In this paper, we make us of the recursively compressed inverse preconditioning (RCIP) method developed by Helsing to solve the integral equation which is efficient and capable of dealing with large wave numbers. For the inverse problem, it is proved that the locally rough surface is uniquely determined from a knowledge of the far-field pattern corresponding to incident plane waves. Further, based on the novel integral equation formulation, a Newton iteration method is developed to reconstruct the locally rough surface from a knowledge of multiple frequency far-field data. Numerical examples are also provided to illustrate that the reconstruction algorithm is stable and accurate even for the case of multiple-scale profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.