The
interfacial structure of water in contact with TiO2 is
the key to understand the mechanism of photocatalytic water dissociation
as well as photoinduced superhydrophilicity. We investigate the interfacial
molecular structure of water at the surface of anatase TiO2, using phase-sensitive sum frequency generation spectroscopy together
with spectra simulation using ab initio molecular
dynamic trajectories. We identify two oppositely oriented, weakly
and strongly hydrogen-bonded subensembles of O–H groups at
the superhydrophilic UV irradiated TiO2 surface. The water
molecules with weakly hydrogen-bonded O–H groups are chemisorbed,
i.e. form hydroxyl groups, at the TiO2 surface with their
hydrogen atoms pointing toward bulk water. The strongly hydrogen-bonded
O–H groups interact with the oxygen atom of the chemisorbed
water. Their hydrogen atoms point toward the TiO2. This
strong interaction between physisorbed and chemisorbed water molecules
causes superhydrophilicity.
Nestlike 3D ZnO porous structures with size of 1.0-3.0 μm have been synthesized through annealing the zinc hydroxide carbonate precursor, which was obtained by a one-pot hydrothermal process with the assistance of glycine, Na(2)SO(4), and polyvinyl pyrrolidone (PVP). The nestlike 3D ZnO structures are built of 2D nanoflakes with the thickness of ca. 20 nm, which exhibit the nanoporous wormhole-like characteristic. The measured surface area is 36.4 m(2)g(-1) and the pore size is ca. 3-40 nm. The unique nestlike 3D ZnO porous structures provided large contacting surface area for electrons, oxygen and target gas molecules, and abundant channels for gas diffusion and mass transport. Gas sensing tests showed that the nestlike 3D ZnO porous structures exhibit excellent gas sensing performances such as high sensitivity and fast response and recovery speed, suggesting the potential applications as advanced gas sensing materials.
Histone crotonylation is a new lysine acylation type of post-translational modification (PTM) enriched at active gene promoters and potential enhancers in yeast and mammalian cells. However, lysine crotonylation in nonhistone proteins and plant cells has not yet been studied. In the present study, we performed a global crotonylation proteome analysis of Nicotiana tabacum (tobacco) using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity purification. A total of 2044 lysine modification sites distributed on 637 proteins were identified, representing the most abundant lysine acylation proteome reported in the plant kingdom. Similar to lysine acetylation and succinylation in plants, lysine crotonylation was related to multiple metabolism pathways, such as carbon metabolism, the citrate cycle, glycolysis, and the biosynthesis of amino acids. Importantly, 72 proteins participated in multiple processes of photosynthesis, and most of the enzymes involved in chlorophyll synthesis were modified through crotonylation. Numerous crotonylated proteins were implicated in the biosynthesis, folding, and degradation of proteins through the ubiquitin-proteasome system. Several crotonylated proteins related to chromatin organization are also discussed here. These data represent the first report of a global crotonylation proteome and provide a promising starting point for further functional research of crotonylation in nonhistone proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.