Background: Cancer patients who have undergone radiotherapy may have an increased risk of subsequent stroke. A clear and detailed understanding of this risk has not been established.Methods: A search for research articles published from January 1990 to November 2017 in the English language was conducted. Subsequent stroke risk in cancer survivors was compared using relative risk (RR) and 95% confidence intervals (CI) according to whether or not radiotherapy was given.Results: A total of 12 eligible studies were identified including 57,881 total patients. All studies were retrospective, as no prospective studies were identified. The meta-analysis revealed a higher overall risk of subsequent stroke in cancer survivors/patients given radiotherapy compared to those not given radiotherapy (RR: 2.09, 95% CI: 1.45, 3.16). In addition, compared to patients not given radiotherapy, there was an increased risk of subsequent stroke for radiotherapy treated patients with Hodgkin's lymphoma (RR: 2.81, 95% CI: 0.69, 4.93) or head/neck/brain/nasopharyngeal cancer (RR: 2.16, 95% CI: 1.16, 3.16), for patients younger than 40 years (RR: 3.53, 95% CI: 2.51, 4.97) or aged 40–49 years (RR: 1.23, 95% CI: 1.09, 1.45) and for patients treated in Asia (RR: 1.88, 95% CI: 1.48, 2.29), the United States (RR: 1.62, 95% CI: 1.01, 2.23), or in Europe (RR: 4.11, 95% CI 2.62, 6.45).Conclusions: The available literature indicates an approximate overall doubling of the subsequent stroke risk in cancer patients given radiotherapy. The elevated risk was generally statistically significant according to cancer type, baseline patient age and region or country where treatment was given. Caution is required in interpreting these findings due to the heterogeneity of populations represented and lack of standardization and completeness across published studies. Further, if real, we cannot conclude the extent to which patient, treatment and/or investigational factors are responsible for this apparent elevated risk. An objective and more detailed understanding of the risks of radiotherapy, and how to prevent them, is urgently required. It is the responsibility of all who provide cancer services to ensure that the experience of all their patients is documented and analyzed using quality registries.
Liver kinase B1 (LKB1) functions as a tumor suppressor encoded by STK11, a gene that mutated in Peutz-Jeghers syndrome and in sporadic cancers. Previous studies showed that LKB1 participates in IR- and ROS-induced DNA damage response (DDR). However, the impact of LKB1 mutations on targeted cancer therapy remains unknown. Herein, we demonstrated that LKB1 formed DNA damage-induced nuclear foci and co-localized with ataxia telangiectasia mutated kinase (ATM), γ-H2AX, and breast cancer susceptibility 1 (BRCA1). ATM mediated LKB1 phosphorylation at Thr 363 following the exposure of cells to ionizing radiation (IR). LKB1 interacted with BRCA1, a downstream effector in DDR that is recruited to sites of DNA damage and functions directly in homologous recombination (HR) DNA repair. LKB1 deficient cells exhibited delayed DNA repair due to insufficient HR. Notably, LKB1 deficiency sensitized cells to poly (ADP-ribose) polymerase (PARP) inhibitors. Thus, we have demonstrated a novel function of LKB1 in DNA damage response. Cancer cells lacking LKB1 are more susceptible to DNA damage-based therapy and, in particular, to drugs that further impair DNA repair, such as PARP inhibitors.
Radon and its progeny are confirmed to be type I carcinogenic agents accounting for increased risks in 10% of observed lung cancers globally. However, the underlying carcinogenic mechanisms are largely unknown. In the present study, BEAS2B cells were directly exposed twice to 20,000 Bq/m(3) radon gas for 20 min once (first passage) and subsequently 10 times (fifth passage). The fifth-passage cells were then subcultured for 1 and 20 generations (named Rn5-1 and Rn5-20, respectively). Molecular mechanisms indicative of malignant transformation were assessed by determination of apoptosis, seroresistance, and microRNA (miRNA) expression profiles. The microRNA profiles were used to assess the functional annotations of the target genes. Data indicated an increased seroresistance and colony efficiency on soft agar, and enhanced apoptosis resistance in the Rn5-20 cells with significant differential expressions in some miRNA, including hsa-miR-483-3p, hsa-miR-494, hsa-miR-2115*, hsa-miR-33b, hsa-miR-1246, hsa-miR-3202, hsa-miR-18a, hsa-miR-125b, hsa-miR-17*, and hsa-miR-886-3p. Functional annotation demonstrated that these miRNA target genes were predominantly involved in the regulation of cell proliferation, differentiation, and adhesion during the process of malignant transformation, which is associated with signal pathways such as mitogen-activated protein kinase (MAPK), Int and Wg (Wnt), reactive oxygen species (ROS), nuclear factor κB (NF-κB), and other genes regulating cell cycles.
This study investigated whether exosomal microRNA-7 (miR-7) mediates lung bystander autophagy after focal brain irradiation in mice. After 10 Gy or sham irradiation of mice brains, lung tissues were extracted for the detection of autophagy markers by immunohistochemistry, western blotting, and quantitative real-time reverse transcription PCR (qRT-PCR), meanwhile the brains were dissociated, the neuron/astrocyte/microglia/oligodendrocyte were isolated, and the miR-7 expression in each population were detected, respectively. A dual-luciferase reporter assay was developed to identify whether Bcl-2 is a target gene of miR-7. After 10 Gy or sham irradiation of astrocytes, exosomes were extracted, stained with Dil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate), and added into non-irradiated astrocytes. Meanwhile, Dil-stained exosomes released from 10 Gy or sham irradiated astrocytes were injected into LC3B-GFP mice via the tail vein. Lung tissues were then extracted for western blotting and qRT-PCR. Irradiation of mouse brains increased the LC3B-II/I ratio, Beclin-1 and miR-7 levels, while decreased the Bcl-2 level in non-irradiated lung tissue. Interestingly, brain irradiation remarkably increased the miR-7 expression in astrocyte and oligodendrocyte. MiR-7 significantly inhibited the luciferase activity of the wild-type Bcl-2-3′-untranslated regions (UTR) reporter vector, but not that of the Bcl-2-3′-UTR mutant vector, indicating that Bcl-2 is directly targeted by miR-7. In in vitro study, the addition of irradiated astrocyte-secreted exosomes increased the LC3B-II/I ratio, Beclin-1 and miR-7 levels, while decreased the Bcl-2 level in non-irradiated astrocytes. Further, the injection of irradiated astrocyte-secreted exosomes through the tail vein increased the lung LC3B-II/I ratio, Beclin-1 and miR-7 level, but decreased the Bcl-2 level in vivo. We concluded that exosomal miR-7 targets Bcl-2 to mediate distant bystander autophagy in the lungs after brain irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.