Circularly polarized luminescence (CPL)-active materials have attracted increasing attention due to their applications in chiral sensing and optoelectronics. However, it is still a challenging task to fabricate CPL materials with large luminescence dissymmetry factors and strong emission intensities in the solid state. In this work, two singlehanded twisted tetraarylethylene (TAE)-bridged polybissilsesquioxane nanotubes have been facilely constructed through a supramolecular templating polymerization of TAE-bridged bis(triethoxysilane) with aggregation-induced emission properties, using self-assemblies of a pair of chiral amino acid-based cationic amphiphiles as the supramolecular templates. It is found that the chirality has been transferred from the self-assemblies to the polybissilsesquioxane nanotubes. The resulting hybrid silicas show high thermal stabilities and bright CPL with the fluorescence quantum yield up to 62.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.