A high-resolution electromagnetic study has helped to define the mineralization and alteration system of the Cretaceous volcano-sedimentary hosted epithermal gold (Au) deposit in Tuoniuhe, northeast China. Audio-magnetotelluric (AMT) array data were acquired to map the regional resistivity structure of the Mesozoic volcanic field, whereas an AMT profile and a ground magnetic survey line with denser site spacing were deployed across the deposit to image the alteration and mineralization system. The electrical resistivity model from 2D inversion of the AMT profile data reveals a low-resistivity (approximately [Formula: see text]) cover from the surface to a depth of 0.1 km, which is likely caused by clay and sulfide minerals in the subaerial alteration zone. The magnetic survey and a geologic borehole log assisted in outlining a zone of tonalite and andesite with silicification in the depth interval of 0.1–0.3 km, featuring high resistivity ([Formula: see text]) and high magnetization ([Formula: see text]). This zone is a potential gold target bounded by two channels of moderate resistivity (approximately [Formula: see text]) to its northwest and southeast. The two channels possibly coincide with breccia pipes with fractured stockworks and high permeability to allow gold-bearing fluids to move toward the surface. The 2D and 3D resistivity models reveal regions of low resistivity ([Formula: see text]) at the depth range of 0.5–1.0 km beneath the Cretaceous calderas and the deposit, which might be related to magmatic cryptoexplosion breccia. In the 2D resistivity model, this magmatic cryptoexplosion breccia zone connects to the subaerial alteration zone through the two breccia pipes, indicative of a circulation system of gold-bearing fluids. Given the coincidence of Cretaceous volcanism and the age of mineralization, the Cretaceous magma is inferred to have supplied heat that drove the convective hydrothermal activity and also was a source of magmatic fluids that led to the development of the Tuoniuhe epithermal gold deposit.
Tight sandstone reservoirs are of interest due to their potentially favorable prospects for hydrocarbon exploration. A better understanding of tight sandstone outcrop reservoir characteristics and their influencing factors is thus needed. By laboratory observation, thin section analysis, and experimental analysis, the current work carried out a detailed investigation of densely sampled tight sandstone outcrops of the Shanxi Formation in the Liujiang River Basin, paving the way for further research on rock types, reservoir spatial distribution, physical properties, and their key controlling factors. The application of the Pressure Pulse Attenuation Method made it possible to determine the porosity and permeability, as well as the analysis of debris composition and filling content. The findings indicate that the main rock type of the tight sandstone outcrop reservoirs in the Shanxi Formation in the Liujiang River Basin is lithic quartz sandstone, some of which contains fine sand-bearing argillaceous siltstone, giving them very low porosity (average porosity of 4.34%) and low permeability (average permeability of 0.023 mD) reservoirs. Secondary pores—mostly dissolved pores among and in grains—are widely developed in the target region. In addition, diagenesis primarily includes mechanical compaction, cementation, and dissolution. The main controlling factors of tight sandstone reservoirs in the target region are sedimentation, diagenesis, and tectonics, whereby sedimentation affects reservoir physical properties that become better as the clast size increases, reservoir properties are negatively impacted by compaction and cementation, and reservoir properties are somewhat improved due to dissolution and the impact of tectonism. In addition, the tilt of the crust will produce faults during the tectonic action, generating reservoir cracks that improve the reservoir’s physical properties. This study tends to be helpful in the prediction of high-quality reservoirs in the Permian Shanxi Formation in North China and can also be used for analogy of high-quality reservoirs in similar areas with complete outcrops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.