B/N-based multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters and the corresponding narrow band emissive organic light-emitting diodes (OLEDs) exhibit great potential for next-generation highresolution displays. Nonetheless, designing MR-TADF emitters with emission wavelength over 550 nm remains challenging. Herein, an effective approach toward yellow-to-orange MR-TADF emitters by integrating a strong electrondonating indolophenazine building block into the B/N-doped polycyclic aromatic hydrocarbons is proposed. The investigation of photophysical properties reveals that the electron-donating difference between the donor segments of MR framework has a dramatic influence on the luminescent features, including the emission wavelength and full-width at half-maximum (FWHM). These TADF emitters display excellent photophysical characteristics such as nearunity photoluminescence quantum yields and almost 100% horizontal dipole ratio. As a result, yellow and orange OLEDs employing these emitters achieve state-of-the-art device performances with an ultrahigh external quantum efficiency of up to nearly 40%, power efficiency of 163 lm W −1 , and luminance close to 120 000 cd m −2 , which set a record among MR-TADF based OLEDs with emission peaks over 550 nm. More impressively, the fabricated device presents outstanding operational stability of LT 99 over 110 h at the initial brightness of 3000 cd m −2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.