In this study, we introduce a versatile nanomaterial based on MoS2 quantum dot@polyaniline (MoS2@PANI) inorganic-organic nanohybrids, which exhibit good potential to not only enhance photoaccoustic (PA) imaging/X-ray computed tomography (CT) signal but also perform efficient radiotherapy (RT)/photothermal therapy (PTT) of cancer. Upon the intravenous injection of MoS2@PANI hybrid nanoparticles, the in vivo tumor could be precisely positioned and thoroughly eliminated under the PA/CT image-guided combination therapy of PTT/RT. This versatile nanohybrid could show good potential to facilitate simultaneously dual-modal imaging and synergetic PTT/RT to realize better anticancer efficiency.
Photoacoustic (PA)/near-infrared fluorescence (NIRF) dual-modal imaging-guided phototherapy has been wide explored very recently. However, the development of high-efficiency and simplified-performed theranostic system for amplifying imaging-guided photothermal therapy/photodynamic therapy (PTT/PDT) is still a great challenge. Herein, a single-light-triggered indocyanine green (ICG)-loaded PEGylation silver nanoparticle core/polyaniline shell (Ag@PANI) nanocomposites (ICG-Ag@PANI) for PA/NIRF imaging-guided enhanced PTT/PDT synergistic effect has been successfully constructed. In this study, the synthesized Ag@PANI nanocomposites are utilized not only as the promising photothermal agent but also as potential nanovehicles for loading photosensitizer ICG via π-π stacking and hydrophobic interaction. The as-prepared ICG-Ag@PANI possesses many superior properties such as strong optical absorption in the near-infrared (NIR) region, enhanced photostability of ICG, as well as outstanding NIR laser-induced local hyperthermia and reactive oxygen species (ROS) generation. In the in vivo study, PA/NIRF dual-modal imaging confirms the accumulation and distribution of ICG-Ag@PANI in the tumor region via enhanced permeability and retention (EPR) effect. Moreover, the PTT effect of ICG-Ag@PANI rapidly raised the tumor temperature to 56.8 °C within 5 min. It is also demonstrated that the cytotoxic ROS generation ability of ICG is well maintained after being loaded onto Ag@PANI nanocomposites. Remarkably, in comparison with PTT or PDT alone, the single 808 nm NIR laser-triggered combined PTT/PDT therapy exhibits enhanced HeLa cells lethality in vitro and tumor growth inhibition in vivo.
Abstract. Curcumin (Cur), one of the most widely used natural active constituents with a great variety of beneficial biological and pharmacological activities, is a practically water-insoluble substance with a short biologic half-life. The aim of this study was to develop a sustained-release solid dispersion by employing water-insoluble carrier cellulose acetate for solubility enhancement, release control, and oral bioavailability improvement of Cur. Solid dispersions were characterized by solubility, in vitro drug release, Fourier transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies. The in vivo performance was assessed by a pharmacokinetic study. Solid-state characterization techniques revealed the amorphous nature of Cur in solid dispersions. Solubility/ dissolution of Cur was enhanced in the formulations in comparison with pure drug. Sustained-release profiles of Cur from the solid dispersions were ideally controlled in vitro up to 12 h. The optimized formulation provided an improved pharmacokinetic parameter (C max =187.03 ng/ml, t max =1.95 h) in rats as compared with pure drug (C max =87.06 ng/ml, t max =0.66 h). The information from this study suggests that the developed solid dispersions successfully enhanced the solubility and sustained release of poorly water-soluble drug Cur, thus improving its oral bioavailability effectively.
Multimodal imaging-guided synergistic therapy promises a more accurate diagnosis and higher therapeutic efficiency than single imaging modality or their simple "mechanical" combination. In this research, we have constructed an innovative multifunctional drug delivery platform by gadolinium (Gd)-based bovine serum albumin (BSA) hybrid-coated hollow gold nanoshells (Au@BSA-Gd). The obtained nanoparticles exhibited excellent photothermal effect and computed tomography (CT)/photoacoustic (PA) activity. Besides, the BSA-bioinspired gadolinium complex endowed the nanoparticles with an excellent T contrast agent for magnetic resonance imaging (MRI). In addition, the near-infrared (NIR) absorbing phototherapeutic agent [indocyanine green (ICG)] was loaded into the Au@BSA-Gd nanoparticles because of their unique, hollow, and porous structures, thus possessing photodynamic/photothermal property and near-infrared fluorescence (NIRF)/PA imaging capability. As a result, a combined cancer therapy containing the photothermal therapy of Au@BSA-Gd and the synchronous photodynamic/photothermal therapy of ICG was constructed. Furthermore, the well-designed nanocomposites with multiple integrated modalities enabled them to be an ideal nanotheranostic agent for NIRF/PA/CT/MR quadmodal imaging. Therefore, the ICG-loaded albumin-bioinspired gadolinium hybrid-functionalized hollow gold nanoshells (ICG-Au@BSA-Gd) hold great promise as a theranostic platform for simultaneous therapeutic monitoring and precise cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.