In this study, we introduce a versatile nanomaterial based on MoS2 quantum dot@polyaniline (MoS2@PANI) inorganic-organic nanohybrids, which exhibit good potential to not only enhance photoaccoustic (PA) imaging/X-ray computed tomography (CT) signal but also perform efficient radiotherapy (RT)/photothermal therapy (PTT) of cancer. Upon the intravenous injection of MoS2@PANI hybrid nanoparticles, the in vivo tumor could be precisely positioned and thoroughly eliminated under the PA/CT image-guided combination therapy of PTT/RT. This versatile nanohybrid could show good potential to facilitate simultaneously dual-modal imaging and synergetic PTT/RT to realize better anticancer efficiency.
Photoacoustic (PA)/near-infrared fluorescence (NIRF) dual-modal imaging-guided phototherapy has been wide explored very recently. However, the development of high-efficiency and simplified-performed theranostic system for amplifying imaging-guided photothermal therapy/photodynamic therapy (PTT/PDT) is still a great challenge. Herein, a single-light-triggered indocyanine green (ICG)-loaded PEGylation silver nanoparticle core/polyaniline shell (Ag@PANI) nanocomposites (ICG-Ag@PANI) for PA/NIRF imaging-guided enhanced PTT/PDT synergistic effect has been successfully constructed. In this study, the synthesized Ag@PANI nanocomposites are utilized not only as the promising photothermal agent but also as potential nanovehicles for loading photosensitizer ICG via π-π stacking and hydrophobic interaction. The as-prepared ICG-Ag@PANI possesses many superior properties such as strong optical absorption in the near-infrared (NIR) region, enhanced photostability of ICG, as well as outstanding NIR laser-induced local hyperthermia and reactive oxygen species (ROS) generation. In the in vivo study, PA/NIRF dual-modal imaging confirms the accumulation and distribution of ICG-Ag@PANI in the tumor region via enhanced permeability and retention (EPR) effect. Moreover, the PTT effect of ICG-Ag@PANI rapidly raised the tumor temperature to 56.8 °C within 5 min. It is also demonstrated that the cytotoxic ROS generation ability of ICG is well maintained after being loaded onto Ag@PANI nanocomposites. Remarkably, in comparison with PTT or PDT alone, the single 808 nm NIR laser-triggered combined PTT/PDT therapy exhibits enhanced HeLa cells lethality in vitro and tumor growth inhibition in vivo.
Photoisomerization dynamics of a light-driven molecular rotary motor, 9-(2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-fluorene, is investigated with trajectory surface-hopping dynamics at the semiempirical OM2/MRCI level. The rapid population decay of the S excited state for the M isomer is observed, with two different decay time scales (500 fs and 1.0 ps). By weighting the contributions of fast and slow decay trajectories, the averaged lifetime of the S excited state is about 710 fs. The calculated quantum yield of the M-to-P photoisomerization of this molecular rotary motor is about 59.9%. After the S → S excitation, the dynamical process of electronic decay is followed by twisting about the central C═C double bond and the motion of pyramidalization at the carbon atom of the stator-axle linkage. Although two S/S minimum-energy conical intersections are obtained at the OM2/MRCI level, only one conical intersection is found to be responsible for the nonadiabatic dynamics. The existence of "dark state" in the molecular rotary motor is confirmed through the simulated time-resolved fluorescence emission spectrum. Both quenching and red shift of fluorescence emission spectrum observed by Conyard et al. [ Conyard, J.; Addison, K.; Heisler, I. A.; Cnossen, A.; Browne, W. R.; Feringa, B. L.; Meech, S. R. Nat. Chem. 2012 , 4 , 547 - 551 ; Conyard, J.; Conssen, A.; Browne, W. R.; Feringa, B. L.; Meech, S. R. J. Am. Chem. Soc. 2014 , 136 , 9692 - 9700 ] are well understood. We find that this "dark state" in the molecular rotary motor is not a new electronic state, but the "dark region" with low oscillator strength on the initial S state.
Near-infrared (NIR)-responsive drug delivery systems have received enormous attention because of their good biocompatibility and high biological penetration. In this work, we report a novel 1-tetradecanol (TD)-controlled and indocyanine green (ICG)-loaded CuS@mSiO phototherapy nanoplatform (CuS@mSiO-TD/ICG). The CuS@mSiO nanoparticles prepared by a facile one-pot approach can serve as drug-delivery vehicles to transport the NIR absorbing phototherapeutic agent (ICG) within the mesoporous cavities. Meanwhile a phase-change molecule (PCM), TD, is introduced as a thermosensitive gatekeeper to avoid the premature release of loaded ICG. Noticeably, the combined therapy is irradiated at an 808 nm single-light wavelength, thus performing the photothermal therapy (PTT) based on CuS@mSiO as well as simultaneously triggering the photodynamic (PDT)/PTT effect based on ICG. Furthermore, ICG also has the function of dual in vivo fluorescence imaging and photoacoustic (PA) imaging. This dual imaging-guided and gatekeeper-controlled nanoplatform for the single-light triggered PTT/PDT treatment holds significant promise for future cancer therapy due to their markedly improved therapeutic efficacy and decreased systemic toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.