Processed meat products are prone to oxidative damage and quality decline during storage; however, these problems can be mitigated by the proper formulation of meat productions. This study evaluated the effects of natural anti-oxidants found in Boswellia serrata (B), whey protein powder (W), and their combination on pork patties during storage, exploring changes in textural properties and lipid oxidation susceptibility. The 2% whey-added group exhibited a higher crude protein content than the untreated control group. The highest water-holding capacity and lowest cooking losses were observed in mixed-additive groups (WB1 (2% W/0.5% B) and WB2 (2% W/1.0% B), and the highest sensory scores for overall acceptability were obtained for WB1. Adding B. serrata can neutralize the hardness caused by whey powder, thereby improving palatability. From 7 d (days 7), the extents of lipid oxidation, determined using 2-thiobarbituric acid-reactive substances (TBARS) analysis, for the WB1 and WB2 groups were significantly lower than that of the control group. The WB1 and WB2 groups exhibited substantially suppressed total bacterial colony and Escherichia coli counts relative to the control group. Our findings suggest that the additive combination of B. serrata and whey protein powders can suppress lipid oxidation, improve storage stability, and enhance textural properties in the production of functional pork patties.
This study investigated the effects of L-cysteine (C) combined with Boswellia serrata (B) and whey protein (W) on the antioxidant and physicochemical properties of pork patties. Proximate composition, water holding capacity (WHC), pH, texture profile analysis, sensory evaluation, thiobarbituric acid-reactive substances (TBARS), DPPH radical-scavenging activity, volatile basic nitrogen (VBN), and color stability were assessed. Patty VBN gradually increased throughout the storage period. However, VBN for the C treatment increased relatively slowly, indicating that cysteine can delay spoilage and extend the shelf life of patties. The protein content of the whey powder treatment group increased to a greater extent than that of the C and control (CON) groups. Pork patties supplemented with antioxidants showed significantly higher WHC and significantly lower cooking loss and hardness than the CON. Moreover, the addition of 2% whey, 1% B. serrata, and 0.25% cysteine (WBC) significantly enhanced the relative DPPH radical-scavenging activity and sensory characteristics of the patties. After 7-day storage, the MetMb and TBARS values of all treatments were significantly lower than those of the untreated. The results indicated that there was synergy among the cysteine, B. serrata, and whey protein. This finding is of great importance to the production of high-quality pork patties with enhanced shelf life.
This study was conducted to determine the quality characteristics and antioxidant properties of yogurt containing omija extract (control, raw omija, and sugared omija) stored at 4°C for 14 days. The pH of all groups decreased, while the titratable acidity increased as the storage period increased. The viscosity of the sugared omija sample was high, while in the syneresis test, the sugared omija sample showed a low value. The total polyphenol content was the highest in the raw omija sample on day 0. DPPH activity was the highest in the raw omija sample for all storage periods; this sample also showed high Fe2+ chelating activity, which did not significantly differ from the sugared omija sample. In sensory evaluation, the sugared omija sample showed the highest overall score. Based on these results, it can be concluded that yogurt containing sugared omija shows improved quality and antioxidant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.