Life cycle assessment of perovskite photovoltaics provides comprehensive insights into diverse environmental impacts and possible improvements in manufacturing sustainable devices.
Increasing demand for energy worldwide, driven largely by the developing world, coupled with the tremendous hidden costs associated with traditional energy sources necessitates an unprecedented fraction of the future global energy mix come from sustainable, renewable sources. The potential solar energy resource dwarfs that of all other renewable sources combined, yet only two photovoltaic technologies are known to have the potential to be scaled up to make dramatic impact on the overall energy mix: silicon and organic photovoltaics. In this paper, we present the long-term sustainability advantages of organics when compared to silicon and other photovoltaic technologies in terms of energy payback time and global warming potential while also discussing the outlook for transitional applications of organic solar cells.
in Wiley Online Library (wileyonlinelibrary.com).This article addresses the optimal design and planning of cellulosic ethanol supply chains under economic, environmental, and social objectives. The economic objective is measured by the total annualized cost, the environmental objective is measured by the life cycle greenhouse gas emissions, and the social objective is measured by the number of accrued local jobs. A multiobjective mixed-integer linear programming (mo-MILP) model is developed that accounts for major characteristics of cellulosic ethanol supply chains, including supply seasonality and geographical diversity, biomass degradation, feedstock density, diverse conversion pathways and byproducts, infrastructure compatibility, demand distribution, regional economy, and government incentives. Aspen Plus models for biorefineries with different feedstocks and conversion pathways are built to provide detailed techno-economic and emission analysis results for the mo-MILP model, which simultaneously predicts the optimal network design, facility location, technology selection, capital investment, production planning, inventory control, and logistics management decisions. The mo-MILP problem is solved with an econstraint method; and the resulting Pareto-optimal curves reveal the tradeoff between the economic, environmental, and social dimensions of the sustainable biofuel supply chains. The proposed approach is illustrated through two case studies for the state of Illinois.We note that both distance variable costs and distance fixed costs are taken into account in the feedstock and fuel ethanol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.