N6-methyladenosine (m6A) methyltransferase METTL3 has been implicated in carcinogenesis, which may be associated the overexpression of MALAT1. However, the downstream mechanics actions remain largely unknown. This study intends to probe the downstream mechanism of the N6-methyladenosine (m 6 A) methyltransferase METTL3 and MALAT1 in adriamycin resistance in breast cancer. Through Bioinformatics databases lncMAP, TCGA and GTEx, we predicted the downstream transcription factors E2F1 and AGR2 of MALAT1 in breast cancer. The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases were used to screen the downstream target genes of MALAT1. MeRIP-qPCR was used to detect the m 6 A level of MALAT1 in cells. RIP was used to detect the binding between MALAT1 and E2F1, and chromatin immunoprecipitation (ChIP) for the binding of E2F1 to AGR2 promoter. Cell Counting Kit-8 and colony formation assays were used to detect cell viability. Transwell was used to detect cell invasion. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of related genes and proteins. A nude mouse xenograft tumor model was established to observe the effect of METTL3 on adriamycin resistance of breast cancer. The total survival of mice after exogenous gene silencing was analyzed by the Kaplan-Meier method. METTL3 was highly expressed in adriamycin-resistant breast cancer cells. METTL3 promotes adriamycin resistance in breast cancer cells. METTL3 mediates the expression of MALAT1 in adriamycinresistant breast cancer through m 6 A. MALAT1 increases adriamycin resistance in breast cancer cells by recruiting E2F1 to activate AGR2 transcription. METTL3 can regulate the expression of MALAT1 through m 6 A, mediate the E2F1/AGR2 axis, and promote the adriamycin resistance of breast cancer. METTL3 may modify MALAT1 protein through m 6 A, recruit E2F1 and activate downstream AGR2 expression, thus promoting adriamycin resistance in breast cancer.
Cholangiocarcinoma (CCA) is a malignancy with increasing incidence in recent years. CCA patients are usually diagnosed at advanced stage due to lack of apparent symptoms and specifically diagnostic markers. Nowadays, surgical removal is the only effective method for CCA whereas overall 5-year-survival rate keeps around 10%. Long-noncoding RNA (lncRNA), a subtype of noncoding RNA, is widely studied to be abnormally expressed in multiple cancers including CCA. LncRNA can promote proliferation, migration, invasion and inhibit apoptosis of CCA. Moreover, lncRNA is negatively correlated with the prognosis of CCA. LncRNA may contribute to the development of CCA via modulating gene transcription, sponging microRNA, regulating CCA-related signaling pathways or protein expression. LncRNA is thought to be potential diagnostic markers and therapeutic targets for CCA.
Background and Aims: Animal models are essential tools to investigate the pathogenesis of diseases. Disruption in the intestinal epithelial barrier and gut vascular barrier is an early event in the development of non-alcoholic fatty liver disease (NAFLD). Intestinal epithelial barrier can be destroyed by dextran sulfate sodium (DSS) oral administration. High fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH) rat model has been widely used. Recently, the combination of HFD with DSS induced NASH model has also been reported. The present study aimed to evaluate whether this composite NASH animal model is more ideal than that induced by HFD alone.Methods: Rats were divided into control, HFD and HFD combined with DSS (DSS + HFD) groups. They were fed with routine diet, high-fat diet, and HFD combined with DSS drinking, respectively, for 22 weeks. Histopathological analysis (HE staining, Oil-Red O staining, Masson staining), lipid parameters testing (TG, TC, GLU, NEFA, TRIG, LDL, HDL), testing on indicators of inflammation (TNF-α, ALT, AST, ALP, LDH) and oxidative stress (MDA, SOD, CAT) were performed.Results: Rats in HFD and DSS + HFD group displayed increase in the body weight, liver weight, lipids accumulation and the levels of TNF-α, ALT, AST, ALP, MDA in serum and liver accompanied with impaired glucose tolerance, obvious hepatitis, and decreased levels of SOD and CAT in serum and liver compared to those in control group. Moreover, in the DSS + HFD group, but not in the HFD group, proliferation of fibrous tissue in the portal area and the hepatic lobules was found.Conclusion: The addition of DSS on high-fat diet did not exacerbate lipid accumulation and inflammation, but induced NASH-related liver fibrosis.
Objectives: Network of long noncoding RNA-microRNA (miRNA)-mRNA is becoming increasingly pivotal roles in carcinogenesis mechanism. Herein, we aim to delineate the mechanistic understanding of dipeptidyl peptidase like 10-antisense RNA 1 (DPP10-AS1)/miRNA-324-3p/claudin 3 (CLDN3) axis in the malignancy of pancreatic cancer (PC).Methods: Microarray profiling and other bioinformatics methods were adopted to predict differentially expressed long noncoding RNA-miRNA-mRNA in PC, followed by verification of expression of DPP10-AS1, microRNA-324-3p (miR-324-3p), and CLDN3 in PC cells. The relationship among DPP10-AS1, miR-324-3p, and CLDN3 were further assessed. The PC cell invasion and migration were evaluated by scratch test and transwell assay. Tumor formation and lymph node metastasis were assessed in nude mice Results: Highly expressed DPP10-AS1 and CLDN3 and poorly expressed miR-324-3p were identified in PC cells. The competitively binding between DPP10-AS1 and miR-324-3p was identified, and CLDN3 was targeted and downregulated by miR-324-3p. In addition, DPP10-AS1 was found to sequester miR-324-3p to release CLDN3 expression. DPP10-AS1 knockdown or miR-324-3p restoration diminished migration, invasion, tumor formation, microvessel density, and lymph node metastasis of PC cells, which was associated with CLDN3 downregulation. Conclusions:Taken together, the study identified the regulatory role of DPP10-AS1/miR-324-3p/CLDN3 axis in PC, offering a mechanistic basis suggesting DPP10-AS1 ablation as a therapeutic target against PC.
Supplemental Digital Content is available in the text
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.